Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ đường cao BH
BC2=BH2+HC2(pytago)
BH=AB.sin60; HC=AC-AH=AC-ABcos60 thay vào trên
BC2=(AB.sin60)2+(AC-ABcos60)2=AB2.sin260+AC2-2AB.ACcos60+AB2.cos260=AB2+AC2-2AB.AC.\(\frac{1}{2}\)=AB2+AC2-AB.AC
A B H C
kẻ BH _|_ AC (H thuộc AC)
xét tam giác ABH có : góc A + góc ABH + góc AHB = 180 (ĐL)
Có : góc A = 60 (gt)
góc AHB = 90 do BH _|_ AC (Cách vẽ)
=> góc ABH = 180 - 90 - 60 = 30
xét tam giác ABH vuông tại H có góc ABH = 30
=> AH = 1/2.AB (đl)
=> AB = 2AH (1)
xét tam giác ABH vuông tại H
=> AB^2 = AH^2 + BH^2 (Đl PTG)
=> BH^2 = AB^2 - AH^2 (2)
xét tam giác BHC vuông tại H :
=> BC^2 = HC^2 + BH^2 (đl PTG)
=> BC^2 = BH^2 + (AC - AH)^2
=> BC^2 = BH^2 + AC^2 - 2AH.AC + AH^2
thay (1)(2) vào ta được :
BC^2 = (AB^2 - AH^2) + AC^2 - AB.AC + AH^2
=> BC^2 = AB^2 - AH^2+ AC^2 - AB.AC + AH^2
=> BC^2 = AB^2 + AC^2 - AB.AC
A B C H
Dễ thôi, ta có:
Kẻ đường cao BH ta được: \(BC^2=BH^2+HC^2\)
\(\Leftrightarrow a^2=\left(AB^2-AH^2\right)+\left(AC-AH\right)^2\)
\(=c^2-AH^2+b^2-2\cdot b\cdot AH+AH^2\)
\(=b^2+c^2-2\cdot AH\cdot b\)
\(=b^2+c^2-2ab\cdot\cos A\)
Từ A hạ AK vuông góc với BC. Ta có KD = DC
Mà : BD^2 - CD^2=(BC-CD)^2 - CD^2= BC^2+CD^2-2BC.CD
= BC^2-BC.2CD=BC^2-BC.KC
= BC^2-AC^2=AB^2(dpcm)
(*) : AB^2=BC^2-AC^2
Từ I dựng đường thẳng vuông góc với AC và cắt BC tại E. Mà AB cũng vuông góc với AC => IE//ABIE//AB => IE là đường trung bình của tam giác ABC => AB=2.IEAB=2.IE và EB=EC=BC2EB=EC=BC2
=> AB2=4.IE2AB2=4.IE2
Xét tam giác vuông EIC có :
IE2=ED.ECIE2=ED.EC (Bình phương 1 cạnh góc vuông = tích của cạnh huyền và hình chiếu của cạnh góc vuông trên cạnh huyền)
⇒AB2=4.IE2=4.ED.EC⇒AB2=4.IE2=4.ED.EC (1)
Ta có EC=BC2EC=BC2 và ED=EC−CD=BC2−CDED=EC−CD=BC2−CD Thay vào (1) ta có:
AB2=4.(BC2−CD).BC2=4.(BC24−CD.BC2)AB2=4.(BC2−CD).BC2=4.(BC24−CD.BC2)
AB2=BC2−2.CD.BCAB2=BC2−2.CD.BC (2)
Mà BC=BD+CDBC=BD+CD Thay vào (2)
⇒AB2=(BD+CD)2−2.CD.(BD+CD)=BD2+CD2+2.BD.CD−2.BD.CD−2.CD2⇒AB2=(BD+CD)2−2.CD.(BD+CD)=BD2+CD2+2.BD.CD−2.BD.CD−2.CD2
⇒AB2=BD2−CD2⇒AB2=BD2−CD2 (đpcm)
đánh lên lại tim đi,bai này lm nhiều quá đến ngán rồi
Kẻ đường cao BH của tam giác ABC.
Dễ thấy \(AH=\frac{AB}{2}\) và \(HC^2=\frac{3}{4}AB^2\)
Tam giác HBC vuông tại H nên:
HC2 + BH2 = BC2
\(\Leftrightarrow BC^2=\left(AC-\frac{AB}{2}\right)^2+\frac{3}{4}AB^2\)
\(=AC^2-AC.AB+\frac{AB^2}{4}+\frac{3AB^2}{4}\)
\(=AB^2+AC^2-AB.AC\) (ĐPCM)
Từ I dựng đường thẳng vuông góc với AC và cắt BC tại E. Mà AB cũng vuông góc với AC => IE//AB => IE là đường trung bình của tam giác ABC => AB=2.IE và EB=EC=BC/2
=> \(AB^2=4.IE^2\)
Xét tam tg vuông EIC có
\(IE^2=ED.EC\) (Bình phương 1 cạnh góc vuông = tích của cạnh huyền và hình chiếu của cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AB^2=4.IE^2=4.ED.EC\) (*)
Ta có \(EC=\frac{BC}{2}\) và \(ED=EC-CD=\frac{BC}{2}-CD\) Thay vào (*) ta có
\(AB^2=4.\left(\frac{BC}{2}-CD\right).\frac{BC}{2}=4.\left(\frac{BC^2}{4}-\frac{CD.BC}{2}\right)\)
\(AB^2=BC^2-2.CD.BC\) (**)
Mà \(BC=BD+CD\) Thay vào (**)
\(\Rightarrow AB^2=\left(BD+CD\right)^2-2.CD.\left(BD+CD\right)=BD^2+CD^2+2.BD.CD-2.BD.CD-2.CD^2\)
\(\Rightarrow AB^2=BD^2-CD^2\) (dpcm)