Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:Có 3a+2b chia hết cho 17
-> 9(3a+2b) chia hết cho 17
->27a+18b chia hết cho 17
-> 17a+10a+17b+b chia hết 17
mà 17a chia hết 17 và 17b chia hết cho 17
-> 10a+b chia hết cho 17
B2:có :a-5b chia hết cho 17
->10(a-5b)chia hết cho17
->10a-50b chia hết cho17
->10a+b-51b chia hết cho 17
mà 51b chia hết cho 17
->10a+b chia hết cho 17
B3:a,có:3n+7 chia hết cho n
->3n chia hết cho n
->(3n+7)-3n chia hết cho n
->7chia hết cho n
->n thuộc Ước(7)
->n=-1;1;-7;7
b,có:27-5n chia hết cho n
->5n chia hết cho n
->(27-5n)+5n chia hết cho n
->27 chia hết cho n
->n thuộc Ước(27)
->n=-1;1;-3;3;-9;9;-27;27
c,có:3n+1 chia hết cho 11-2n
->6n+2 chia hết cho 11-2n
->33-6n chia hết cho 11-2n
->(33-6n)+(6n+2) chia hết cho 11-2n
->35 chia hết cho 11-2n
->11-2n thuộc Ước(35)
->11-2n=-1;1;-5;5;-7;7;-35;35
->2n=12;10;16;6;18;4;46;-24
->n=6;5;8;3;9;2;23;-12
1,
a, n+3 chia hết cho 13
=> n+3 thuộc B(13)
=> n+3=13k (k thuộc N)
=> n=13k-3
Vậy n có dạng 13k-3
b, n-3 chia hết cho n+3
=> n+3-6 chia hết cho n+3
=>6 chia hết cho n+3
=>n+3 thuộc Ư(6) = {1;2;3;6}
=>n thuộc {-2;-1;0;3}
Vì n là stn nên n thuộc {0;3}
c,2n+4+5 chia hết cho n+1
=>2n+2+7 chia hết cho n+1
=>2(n+1)+7 chia hết cho n+1
=>7 chia hết cho n+1
=>n+1 thuộc Ư(7)={1;7}
=>n thuộc {0;7}
d, 2n-7 chia hết cho 3-n
Vì 2(3-n) chia hết cho 3-n
=> 2n-7+2(3-n) chia hết cho 3-n
=> 2n-7+6-2n chia hết cho 3-n
=>-1 chia hết cho 3-n
=>3-n thuộc Ư(-1)={1;-1}
=>n thuộc {2;4}
2,
Ta có: (p-1)p(p+1) chia hết cho 3 mà (p,3)=1 nên (p-1)(p+1) chia hết cho 3 (1)
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ => p-1 và p+1 là 2 số chẵn liên tiếp, có 1 số là bội 4 nên tích của chúng chia hết cho 8 (2)
Mà (3,8) = 1 (3)
Từ (1),(2),(3) => (p-1)(p+1) chia hết cho 24
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
A= 3a+5b
B= a+4b
3B - A = 3a+12b - 3a -5b = 7b chia hết cho 7
+ Nếu A chia hết cho 7 => 3B chia hết cho 7 => B chia hết cho 7
+Nếu B chia hết cho 7 => 3B chia hết cho 7 => A chia hết cho 7
=> đpcm
Xét 3a+5b+4(a+4b)
= 3a+5b+4a+16b
= 7a+21b
=7(a+3b) chia hết cho 7
Nên 3a+5b chia hết cho 7 <=> a+4b chia hết cho 7
c) Ta có n-3 chia hết cho n-3
Suy ra 2(n-3) chia hết cho n-3
=2n-6 chia hết cho n-3(1)
Lại có 2n-1 chia hết cho n-3(2)
Từ (1)và(2) suy ra
[(2n-6)-(2n-1)] chia hết cho 3
Suy ra (2n-6-2n+1) chia hết cho 3
Suy ra -5 chia hết cho 3
Suy ra n-3 thuộc ước của -5
Ta co U(5)={-1;-5;1;5}
+ n-3=(-1)
->n=2
+ n-3=-5
-> n=-2
+ n-3=1
-> n=4
+n-3=5
-> n=8
Vậy n thuộc {-2;2;4;8}
Mình ko biết