Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề là: Cho 10k - 1 chia hết cho 19
a) 10k - 1 chia hết cho 19 => 10k - 1 = 19n (n là số tự nhiên)
=> 10k = 19n + 1 => 102k = (10k)2 = (19n +1)2 = (19n +1)(19n+1) = 361n2 + 38n + 1
=> 102k - 1 = 361n2 + 38n + 1 - 1 = 361n2 + 38n chia hết cho 19 => 102k - 1 chia hết cho 19
b) Tường tự,
103k = (10k)3 = (19n + 1)3 = (19n +1)2.(19n +1) = (361n2 + 38n +1).(19n +1) = 6859n3 + 1083n2 + 57n + 1
=> 103k -1 = 6859n3 + 1083n2 + 57n chia hết cho 19
vậy 103k - 1 chia hết cho 19
hình như sai đề vì số là lũy thừa của 10 làm gì chia hết cho 19
Cho 10k -1 chia hết cho 19 với k>1.Chứng minh rằng:
a,102k -1 chi hết cho 19
b, 103k-1 chia hết cho 19
ai làm được câu 1 thì trả lời trước nhé, mình đang cần
a/ 10 ^2k - 1 = 10 ^ 2k - 10 ^k + 10 ^ k -1 = 10 ^k(10 ^ k - 1 ) + ( 10 ^ k - 1 ) chia hết cho 19. Bạn hay xem lại các tính chất
b/ 10^3k -1 = 10 ^ 3k - 10 ^k + 10^ k - 1 = 10 ^ k ( 10^2k - 1 ) + ( 10 ^k - 1) chia hết cho 19. xem lại bài a nha. h
nhớ tick nha
Bài 1:
A = 32 + 33 + 34 + ... + 32018
3A = 33 + 34 + 35 + ... + 32019
3A - A = (33 + 34 + 35 + ... + 32019) - (32 + 33 + 34 + ... + 32018)
2A = 32019 - 9
A = (32019 - 9) : 2
= (32016.33 - 9) : 2
= [ (34)504.27 - 9] : 2
= [ (...1)504.27 - 9] : 2
= [ (...1).27 - 9] : 2
= [ (...7) - 9] : 2
= (....8) : 2
= ...4
Vậy c/s tận cùng của A là 4
Bài 2:
Ta có:
1019 + 1018 + 1017
= 1016.103 + 1016.102 + 1016.10
= 1016.(103 + 102 + 10)
= 1016.1110
= 1016.2.555
Vì 555 chia hết cho 555 nên 1016.2.555 chia hết cho 555
Vậy 1019 + 1018 + 1017 chia hết cho 555 (đpcm)
Bài 3:
x + 6 chia hết cho x + 2
=> x + 2 + 4 chia hết cho x + 2
=> 4 chia hết cho x + 2
=> x + 2 thuộc Ư(4) = {\(\pm1;\pm2;\pm4\)}
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
Vậy x = {-1;-3;0;-4;2;-6}
Bài 4:
Giả sử x + 4y chia hết cho 7 (1)
Vì 3x + 5y chia hết cho 7 nên 2(3x + 5y) chia hết cho 7
=> 6x + 10y chia hết cho 7 (2)
Từ (1) và (2) => (x + 4y) + (6x + 10y) chia hết cho 7
=> x + 4y + 6x + 10y chia hết cho 7
=> (x + 6x) + (4y + 10y) chia hết cho 7
=> 7x + 14y chia hết cho 7
=> 7(x + 2y) chia hết cho 7
=> Giả sử đúng
Vậy x + 4y chia hết cho 7 (đpcm)
Bài 5:
1, Ta có: \(-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow-1-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow A\le0\)
Dấu " = " xảy ra <=> (x + 2)2018 = 0 <=> x = -2
Vậy GTNN của A là -1 khi x = -2
2, Ta có: \(x^2\ge0\)
\(\left|2y-18\right|\ge0\)
\(\Rightarrow x^2+\left|2y-18\right|\ge0\)
\(\Rightarrow-9+x^2+\left|2y-18\right|\ge-9\)
Dấu " = " xảy ra <=> \(\left\{\begin{matrix}x^2=0\\\left|2y-18\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Vậy GTLN của B là -9 khi \(\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Bài 6:
1, xy + 2x - y - 2 = 5
<=> x(y + 2) - (y + 2) = 5
<=> (x - 1)(y + 2) = 5
=> x - 1 và y + 2 thuộc Ư(5) = {\(\pm1;\pm5\)}
Ta có bảng:
x - 1 | 1 | -1 | 5 | -5 |
y + 2 | 5 | -5 | 1 | -1 |
x | 2 | 0 | 6 | -4 |
y | 3 | -7 | -1 | -3 |
Vậy các cặp (x;y) là (2;3) ; (0;-7) ; (6;-1) ; (-4;-3)
2, x + y = 2xy
<=> 2xy - x - y = 0
<=> 2(2xy - x - y) = 2.0
<=> 4xy - 2x - 2y = 0
<=> (4xy - 2x) - 2y - 1 = 0 - 1
<=> 2x(2y - 1) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = -1
=> 2x - 1 và 1 - 2y thuộc Ư(-1) = {\(\pm1\)}
Ta có bảng:
2x - 1 | 1 | -1 |
1 - 2y | -1 | 1 |
x | 1 | 0 |
y | 1 | 0 |