K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chứng minh bổ đề:

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

ta có:

ad<bc

=>ab+ad<ab+bc

=>a(b+d)<b(a+c)

\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

ad<bc

=>ad+cd<bc+cd

=>d(a+c)<c(b+d)

\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

ta có:

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ab}{b^2}< \frac{cd}{d^2}\Leftrightarrow\frac{ab}{b^2}< \frac{ab+cd}{b^2+d^2}< \frac{cd}{d^2}\Leftrightarrow\frac{a}{b}< \frac{ab+cd}{b^2+d^2}< \frac{c}{d}\)

=>đpcm

mà bn lấy mấy bài bất đẳng thức ở đâu thế

24 tháng 11 2018

đây là toán lớp 9 sao lại có trong chuyên đề bồi dưỡng lớp 7 luôn vậy?????

27 tháng 12 2015

tích đúng đi sau làm cho

t

24 tháng 7 2019

b, \(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\)\(\frac{b+c}{b+c+a}>\frac{b+c}{a+b+c+d}\)

 \(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d};\frac{d+a}{a+d+b}>\frac{a+d}{a+b+c+d}\)

Cộng các bĐT trên

=> \(B>\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

Ta  có Với \(0< \frac{x}{y}< 1\)

=> \(\frac{x}{y}< \frac{x+z}{y+z}\)

Áp dụng ta có 

\(B>\frac{a+b+d}{a+b+c+d}+...+\frac{d+a+c}{a+b+c+d}=3\)

Vậy 2<B<3

6 tháng 9 2018

a) Áp dụng bdt cosi schwars ta có 

 \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{a+b+b+c+c+d+d+a}\)

\(=\frac{a+b+c+d}{2}\)

6 tháng 9 2018

bh mk can mn ho tro jup mk 2 cau cuoi nha

8 tháng 9 2018

Với a,b,c,d là các số dương, ta có :

\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d};\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d};\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

Cộng 4 bất đẳng thức trên, ta đc :

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)(1)

Lại có :

\(\frac{a}{a+b+c}< \frac{a}{a+c};\frac{c}{c+d+a}< \frac{c}{a+c}\Rightarrow\frac{a}{a+b+c}+\frac{c}{a+d+a}< 1\)(2)


\(\frac{b}{b+c+d}< \frac{b}{b+d};\frac{d}{d+a+b}< \frac{d}{b+d}\Rightarrow\frac{b}{b+c+d}+\frac{d}{d+a+b}< 1\)(3)

(1),(2),(3) => đpcm

7 tháng 9 2015

Bài 1:Với  a,b,c,d dương

Ta có: \(\frac{a}{a+b+c+d}<\frac{a}{a+b+c}<\frac{a+d}{a+b+c+d}\) 

          \(\frac{b}{a+b+c+d}<\frac{b}{b+c+d}<\frac{b+a}{a+b+c+d}\) 

          \(\frac{c}{a+b+c+d}<\frac{c}{a+c+d}<\frac{c+b}{a+b+c+d}\) 

          \(\frac{d}{a+b+c+d}<\frac{d}{a+b+d}<\frac{d+b}{a+b+c+d}\) 

Cộng vế theo vế 4 bất đẳng thức tên ta có:

    \(\)  1< A <2 (đpcm)

Bài 2: a,b,c là độ dài 3 cạnh của tam giác.ta có: 

    \(\frac{a}{b+c}<\frac{2a}{a+b+c}\) 

   \(\frac{b}{c+a}<\frac{2b}{a+b+c}\) 

  \(\frac{c}{a+b}<\frac{2c}{a+b+c}\) 

Cộng 3 bất đẳng thức trên vế theo vế ta có: 

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<\frac{2\left(a+b+c\right)}{a+b+c}=2\left(đpcm\right)\)

4 tháng 10 2020

Từ giả thiết  => \(\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{a}{a+1}=\frac{1}{a+1}\)

Áp dụng bđt Cauchy cho 3 số dương : \(\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3.\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\). Tương tự: \(\frac{1}{b+1}\ge3.\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\)

\(\frac{1}{c+1}\ge3.\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)

\(\frac{1}{d+1}\ge3.\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Nhân từ 4 bđt: \(1\ge81abcd\Rightarrow abcd\le\frac{1}{81}\)