K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

a)  \(5\left(x+3\right)-6x-2x^2=0\)   \(\Leftrightarrow5.\left(x+3\right)-2x.\left(x+3\right)=0\) 

\(\Leftrightarrow\left(x+3\right)\left(5-2x\right)=0\Leftrightarrow\hept{\begin{cases}x+3=0\\5-2x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\2x=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\x=\frac{5}{2}\end{cases}}}\)

b)  \(6x.\left(x^2-2\right)-\left(2-x^2\right)=0\)  \(\Leftrightarrow6x.\left(x^2-2\right)+\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(6x+1\right)=0\Leftrightarrow\hept{\begin{cases}x^2-2=0\\6x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=2\\6x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\sqrt{2}\\x=\frac{-1}{6}\end{cases}}}\)

c)  \(4x.\left(x-2017\right)-x+2017=0\) \(\Leftrightarrow4x.\left(x-2017\right)-\left(x-2017\right)=0\)

\(\Leftrightarrow\left(x-2017\right).\left(4x-1\right)=0\) \(\Leftrightarrow\hept{\begin{cases}x-2017=0\\4x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2017\\4x=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}}\)

d)  \(12x=x^2+36\) \(\Leftrightarrow x^2-12x+36=0\) \(\Leftrightarrow\left(x-6\right)^2=0\) \(\Rightarrow x-6=0\) \(\Leftrightarrow x=6\)

1 tháng 8 2017

ã) x=-3

4 tháng 10 2020

Có làm theo hàng đẳng thức ko bạn?

5 tháng 10 2020

26 tháng 10 2017

Trần văn ổi ()

26 tháng 10 2017

đù khó thế

16 tháng 8 2019

d) \(4x^2-9-x\left(2x-3\right)=0\)

\(\Leftrightarrow4x^2-9-2x^2+3x=0\)

\(\Leftrightarrow2x^2+3x-9=0\)

\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)

Vậy pt có 2 nghiệm phân biệt

\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)

16 tháng 8 2019

e) \(x^3+5x^2+9x=-45\)

\(\Leftrightarrow x^3+5x^2+9x+45=0\)

\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)

\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)

1 tháng 10 2020

a, \(x^2-12x-2x+24=0\Leftrightarrow x^2-14x+24=0\Leftrightarrow\left(x-12\right)\left(x-2\right)=0\)

TH1 : x = 12 ; TH2 : x = 2 

b, \(x^2-5x-24=0\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

TH1 : x = 8 ; TH2 : x = -3 

c, \(4x^2-12x-7=0\Leftrightarrow\left(2x+1\right)\left(2x-7\right)=0\)

TH1 : x = -1/2 ; TH2 : x = 7/2

d, \(x^3+6x^2+12x+8=0\Leftrightarrow\left(x+2\right)^3=0\Leftrightarrow x=-2\)

Tương tự HĐT thôi :)

1 tháng 10 2020

a) x2 - 12x - 2x + 24 = 0

<=> x( x - 12 ) - 2( x - 12 ) = 0

<=> ( x - 12 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}x-12=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)

b) x2 - 5x - 24 = 0

<=> x2 + 3x - 8x - 24 = 0

<=> x( x + 3 ) - 8( x + 3 ) = 0

<=> ( x + 3 )( x - 8 ) = 0

<=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)

c) 4x2 - 12x - 7 = 0

<=> 4x2 + 2x - 14x - 7 = 0

<=> 2x( 2x + 1 ) - 7( 2x + 1 ) = 0

<=> ( 2x + 1 )( 2x - 7 ) = 0

<=> \(\orbr{\begin{cases}2x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)

d) x3 + 6x2 + 12x + 8 = 0

<=> ( x + 2 )3 = 0

<=> x + 2 = 0

<=> x = -2

e) ( x + 2 )2 - x2 + 4 = 0

<=> x2 + 4x + 4 - x2 + 4 = 0

<=> 4x + 8 = 0

<=> 4x = -8

<=> x = -2

f) 2( x + 5 ) = x2 + 5x

<=> x2 + 5x - 2x - 10 = 0

<=> x( x + 5 ) - 2( x + 5 ) = 0

<=> ( x + 5 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

m) 16( 2x - 3 )2 - 25( x - 5 )2 = 0

<=> 42( 2x - 3 )2 - 52( x - 5 )2 = 0

<=> [ 4( 2x - 3 ) ]2 - [ 5( x - 5 ) ]2 = 0

<=> ( 8x - 12 )2 - ( 5x - 25 )2 = 0

<=> [ 8x - 12 - ( 5x - 25 ) ][ 8x - 12 + ( 5x - 25 ) ] = 0

<=> ( 8x - 12 - 5x + 25 )( 8x - 12 + 5x - 25 ) = 0

<=> ( 3x + 13 )( 13x - 37 ) = 0

<=> \(\orbr{\begin{cases}3x+13=0\\13x-37=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)

n) x2 - 6x + 4 = 0

<=> ( x2 - 6x + 9 ) - 5 = 0

<=> ( x - 3 )2 - ( √5 )2 = 0

<=> ( x - 3 - √5 )( x - 3 + √5 ) = 0

<=> \(\orbr{\begin{cases}x-3-\sqrt{5}=0\\x-3+\sqrt{5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)

1 tháng 10 2020

a) \(x^2-12x-2x+24=0\)

\(\Leftrightarrow x\left(x-12\right)-2\left(x-12\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)

b) \(x^2-5x-24=0\)

\(\Leftrightarrow\left(x^2+3x\right)-\left(8x+24\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)

c) \(4x^2-12x-7=0\)

\(\Leftrightarrow\left(4x^2-14x\right)+\left(2x-7\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}\)

d) \(x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Rightarrow x=-2\)

1 tháng 10 2020

e) \(\left(x+2\right)^2-x^2+4=0\)

\(\Leftrightarrow4x+8=0\)

\(\Rightarrow x=-2\)

f) \(2\left(x+5\right)=x^2+5x\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

m) \(16\left(2x-3\right)^2-25\left(x-5\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}8x-12=5x-25\\8x-12=25-5x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=-13\\13x=37\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)

n) \(x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2-5=0\)

\(\Leftrightarrow\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)

6 tháng 8 2019

a) \(x^2-12x+11\)\(=0\)

\(\Leftrightarrow\left(x-6\right)^2-25=0\)

\(\Leftrightarrow\left(x-6+5\right)\left(x-6-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=11\end{matrix}\right.\)

6 tháng 8 2019

a)\(x^2-12x+11=0\)

\(x^2-x-11x+11=0\)

\(\left(x^2-x\right)-\left(11x-11\right)=0\)

\(x\left(x-1\right)-11\left(x-1\right)=0\)

\(\left(x-1\right)\left(x-11\right)=0\)

\(=>\left[{}\begin{matrix}x-1=0\\x-11=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=1\\x=11\end{matrix}\right.\)

b)\(4x^2-4x-3=0\)

\(4x^2-2x+6x-3=0\)

\(2x\left(2x-1\right)+3\left(3x-1\right)=0\)

\(\left(2x-1\right)\left(2x+3\right)=0\)

\(=>\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=0,5\\x=-1,5\end{matrix}\right.\)\

c)\(4x^2-12x-7=0\)

\(4x^2-14x+2x-7=0\)

\(2x\left(2x-7\right)+\left(2x-7\right)=0\)

\(\left(2x-7\right)\left(2x+1\right)=0\)

\(=>\left[{}\begin{matrix}2x-7=0\\2x+1=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)