Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
(x2-x+1)(x+1)-x3+3x=15
x3-x2+x+x2-x+1-x3+3x=15
x3-x3-x2+x2+x-x+3x+1=15
3x+1=15
3x=15-1
3x=14
x=14/3
b,
(x+3)(x-2)+3x=\(\frac{4}{x+\frac{3}{4}}\)
x2-2x+3x-6+3x=\(\frac{4}{x+\frac{3}{4}}\)
x2-2x+3x+3x-6=\(\frac{4}{x+\frac{3}{4}}\)
Tới đây hết biết , đề có gì sai sai sao ý !
c,
(x2-5)(x+2)+5x=2x2+17
x3+2x2-5x-10+5x=2x2+17
x3+2x2-5x+5x-10=2x2+17
x3+2x2-10=2x2+17
x3-10=17
x3=17+10
x3=27
\(\Rightarrow x=3\)(Vì : 33=27)
_k_ nhé bn
Nhân ra thôi bạn, có hằng đẳng thức gì đâu !
a) \(\left(x^2-x+1\right)\left(x+1\right)-x^3+3x=15\)
\(\Leftrightarrow\left(x^2-x+1\right)\cdot x+x^2-x+1-x^3+3x=15\)
\(\Leftrightarrow x^3-x^2+x+x^2-x+1-x^3+3x=15\)
\(\Leftrightarrow1+3x=15\Leftrightarrow3x=14\Leftrightarrow x=\frac{14}{3}\)
b) \(\left(x+3\right)\left(x-2\right)+3x=4\cdot\left(x+\frac{3}{4}\right)\)
\(\Leftrightarrow x^2+3x-2x-6+3x=4x+3\)
\(\Leftrightarrow x^2+4x-6=4x+3\)
\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
c) \(\left(x^2-5\right)\left(x+2\right)+5x=2x^2+17\)
\(\Leftrightarrow x^3-5x+2x^2-10+5x=2x^2+17\)
\(\Leftrightarrow x^3=27\Leftrightarrow x=3\)
a) 4(x+2) - 7(2x - 1) + 9(3x - 4)=30
⇔4x+8 - 14x + 7 + 27x - 36 = 30
⇔ 17x = 51
⇔ x = 3
b) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) + 11
⇔ 10x - 16 - 12x + 15 = 12x - 16 + 11
⇔ -14x = -4
⇔ x= \(\frac{2}{7}\)
c) 5x(1 - 2x) - 3x(x + 18) = 0
⇔ 5x - 10x\(^2\) - 3x\(^2\) -54x =0
⇔ -13x\(^2\) -49 x = 0
⇔ -x ( 13x + 49 ) =0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\13x+49=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-49}{13}\end{matrix}\right.\)
d) 5x - 3{4x - 2[4x - 3(5x - 2)]} = 182
⇔ 5x - 3[ 4x - 2( 4x - 15x + 6 ) ]= 182
⇔5x - 3 ( 4x - 8x + 30x - 12 ) = 182
⇔ 5x - 3 ( 26x - 12 ) = 182
⇔ 5x - 78x + 36 = 182
⇔ - 73x = 146
⇔ x = -2
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
a) \(A=\left(x^3+x^2\right)-\left(x+1\right)=x\left(x+1\right)-\left(x+1\right)=\left(x-1\right)\left(x+1\right)\)
b) \(B=\left(x^3-3x^2\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x^2-4\right)\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
\(a,\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\left(x-1\right)\left(5x+3-3x+8\right)=0\)
\(\left(x-1\right)\left(2x+11\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\2x=-11\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-\frac{11}{2}\end{cases}}}\)
\(b,3x\left(25x+15\right)-35\left(5x+3\right)=0\)
\(15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\left(5x+3\right).5\left(3x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5\left(3x-7\right)=0\end{cases}\Rightarrow\orbr{\begin{cases}5x=-3\\3x-7=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{7}{3}\end{cases}}}\)
a) A= (5x-2).(x+1)-(x-3).(5x+1)-17(x+3)
=> A= 5x2+5x-2x-2-5x2-x+15x+3-17x-51
=> A= -50
b) B= (6x-5) × ( x+8) - (3x-1) × (2x+3) - 9(4x-3)
=> B= 6x2+48x-5x-40-6x2-9x+2x+3-36x+27
=> B= -10
c) C = x(x3 + x2 - 3x -2 ) - ( x2 -2 ) × ( x2+x -1 )
=> C= x4+x3-3x2-2x-x4+x3+3x2-2x-2
=> C= 2x3-4x-2
\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{3;-\dfrac{5}{2}\right\}\)
\(b,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\Leftrightarrow-\left(3x-2\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(-x-11-2+5x\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(4x-13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{\dfrac{2}{3};\dfrac{13}{4}\right\}\)
\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{-\dfrac{1}{2};3\right\}\)
\(d,\left(x-1\right)\left(2x-1\right)=x\left(1-x\right)\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)+x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1+x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{1;\dfrac{1}{3}\right\}\)
\(e,0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)
\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(1,5x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(0,5x-1,5x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\-x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{1;3\right\}\)
\(f,\left(x+2\right)\left(3-4x\right)=x^2+4x=4\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-x^2-4x-4=0\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x-x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{-2;\dfrac{1}{5}\right\}\)
\(g,\left(2x^2+1\right)\left(4x-3\right)=\left(x-12\right)\left(2x^2+1\right)\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3\right)-\left(x-12\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+12\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(3x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\forall x\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\\x=-3\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{-3\right\}\)
\(h,2x\left(x-1\right)=x^2-1\)
\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy nghiệm của pt là \(S=\left\{1\right\}\)
a) 3x-1=-17
<=>3x=-16
<=>x=-16/3
Vậy...
b) 40-(3x-8)=3(3-5x)
<=>40-3x+8=9-15x
<=>12x = -39
<=> x = -13/4
Vậy ...
c) x/2(x-2) + x/2x+2 = 2x/(x+1)(x-2)
<=> x/2(x-2) + x/2(x+1) = 2x/(x+1)(x-2)
<=> x(x+1)/2(x-2)(x+1) + x(x-2)/2(x+1)(x-2) = 4x/2(x+1)(x-2)
=>x(x+1) + x(x-2) = 4x
<=> x2 + x + x2 -2x = 4x
<=> 2x^2 -5x = 0
<=> x(2x-5) = 0
<=>x=0 hoặc 2x-5=0
<=>x=0 <=>x=5/2
Vậy...
(Nhớ tick mik nha)
a: =>3x=-16
=>x=-16/3
b: =>40-3x+8=9-15x
=>-3x+48=9-15x
=>12x=-39
=>x=-13/4
c: =>x(x+1)+x(x-2)=4x
=>x^2+x+x^2-2x-4x=0
=>2x^2-5x=0
=>x=0 hoặc x=5/2