Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = x3 + 9x2 + 27x + 27 - 9x3 -6x2 - x + 8x3 +1 -3x2 =54
26x +28 = 54
26x = 54-28 = 26
x = 1
b) = x3 - 9x2 + 27x -27 - x3 +27 +6x2 + 12x + 6 +3x2 = -33
39x +6 = -33
39x = -33-6 = -39
x = -1
b) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)
\(=3x^3+6x-3x^3+3x\)
\(=3x\)
d) \(100^2-99^2+98^2-97^2+...+2^2-1\)
\(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+..+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+..+2+1\)
\(=\frac{\left(100+1\right)\cdot100}{2}=5050\)
1)
Nếu x>1 thì x^2>1; y^2;z^2 cx lớn=1
=> x^2+y^2+z^2>1=> Loại
Nếu x<-1=> x^2>1; y^2;z^2 cx lớn=1
=> x^2+y^2+z^2>1=> Loại
CMTT vs y,z thì -1<=x,y,z<=1
TH1: -1<=x<0
=> x<x^2 do x âm và x^2 dương
CMTT => y<y^2; z<z^2
=> x+y+z<x^2+y^2+z^2
Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2
=> LOẠI.
TH2: 0<=x,y,z<=1
=> x>=x^2; y>=y^2; z>=z^2
=> x+y+z>=x^2+y^2+z^2
Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2
=> ''='' xảy ra <=> x=0 hoặc 1; y=0 hoặc 1; z=0 hoặc 1
=> (x,y,z)=(0;0;1) và các hoán vị
=> A=1.
A=4(3^2+1)(3^4+1)(3^8+1)...(3^64+1)
2A=8(3^2+1)(3^4+1)(3^8+1)...(3^64+1)
2A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)...(3^64+1)
2A=(3^4-1)(3^4+1)(3^8+1)...(3^64+1)
2A=(3^8-1)(3^8+1)....(3^64+1)
2A=(3^16-1)...(3^64+1)
......
2A=(3^64-1)(3^64+1)
2A=3^128-1
A=(3^128-1)/2
=> A>B
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^{16}-1\right)\left(3^{16}+1\right)...\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)
\(\Leftrightarrow4A=\left(3^{64}-1\right)\left(3^{64}+1\right)\Leftrightarrow4A=3^{128}-1\Leftrightarrow A=\frac{3^{128}-1}{4}\)
Ta có \(\frac{3^{128}-1}{4}< 3^{128}-1\Rightarrow A< B\)
Lâm Huyền:Bạn sai đề rồi B phải là 3128-1 chứ !
Phần a? phải là \(4a^2-4a+1\)chứ
a) \(4a^2-4a+1=\left(2a\right)^2+2.2a+1\)
\(=\left(2a+1\right)^2\)
b) \(9x^2-25y^2=\left(3x\right)^2-\left(5y\right)^2\)
\(=\left(3x-5y\right)\left(3x+5y\right)\)
c) \(1-2x+a^2=\left(1-a\right)^2\)
d) \(\left(2x+1\right)-2.\left(2x+1\right)\left(3x-y\right)+\left(3x-y\right)^2\)
\(=\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)
nếu có sai thì bn thông cảm
1.
b) nó là hằng đẳng thức rồi bn nhá
c) \(1-2a+a^2\)= \(1^2-2a1+a^2\)=\(\left(1-a\right)^2\)
d)\(\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)=\(\left(2x+1-3x+y\right)^2\)=\(\left(1-x+y\right)^2\)
2.
a)\(\left(\frac{1}{2}x\right)^2-\left(3y\right)^2\)=\(\left(\frac{x}{2}-3y\right)\left(\frac{x}{2}+3y\right)\)
b) Ko khai triển đc
c) \(4x^2+2xy+\frac{1}{4}y^2\)
a) 16(4x+5)2 - 25(2x+2)2
\(=\left[4\left(4x+5\right)\right]^2-\left[5\left(2x+2\right)\right]^2\)
\(=\left[4\left(4x+5\right)+5\left(2x+2\right)\right]\left[4\left(4x+5\right)-5\left(2x+2\right)\right]\)
\(=\left(16x+20+10x+10\right)\left(16x+20-10x-10\right)\)
\(=\left(26x+30\right)\left(6x+10\right)\)
\(b,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-2y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-3y+5\right)\)
\(c,\left(x+1\right)^4-\left(x-1\right)^4\)
\(=\left(x+1\right)^{2^2}-\left(x-1\right)^{2^2}\)
\(=\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\)
\(=\left(x^2+2x+1+x^2-2x+1\right)\left[\left(x+1+x-1\right)\left(x+1-x+1\right)\right]\)
\(=\left(2x^2+2\right)2x.2\)
\(=4x.2\left(x^2+1\right)\)
\(=8x\left(x^2+1\right)\)
1.A
2.D
3.C
4.B
5.D
Nếu đề là rút gọn thì làm như này nha:
A = 3(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2²-1)(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2^4 - 1)(2^4 + 1)....(2^64 + 1) + 1
= (2^8 - 1).(2^8 + 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^16 - 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^32 - 1)(2^32 + 1)(2^64 + 1) + 1
= (2^64 - 1)(2^64 + 1) + 1 = 2^128 - 1 + 1 = 2^128.