Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
=> \(\frac{4\left(x+1\right)}{12}+\frac{9\left(2x+1\right)}{12}=\frac{2\left(2x+3\left(x+1\right)\right)}{12}+\frac{7+12x}{12}\)
=> \(4\left(x+1\right)+9\left(2x+1\right)=2\left(2x+3\left(x+1\right)\right)+7+12x\)
=> \(4\left(x+1\right)+9\left(2x+1\right)=2\left(2x+3x+3\right)+7+12x\)
=> \(4x+4+18x+9=4x+6x+6+7+12x\)
=> \(4x+18x-12x-6x-4x=6+7-4-9\)
=> \(0x=0\) ( Luôn đúng với mọi x )
Vậy phương trình có vô số nghiệm .
b, Ta có : \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
=> \(\frac{2-x}{2001}+1=\frac{1-x}{2002}+1-\frac{x}{2003}+1\)
=> \(\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+\frac{-x}{2003}+1\)
=> \(\frac{2-x}{2001}+\frac{2001}{2001}=\frac{1-x}{2002}+\frac{2002}{2002}+\frac{-x}{2003}+\frac{2003}{2003}\)
=> \(\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)
=> \(\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)
=> \(\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
=> \(2003-x=0\)
=> \(x=2003\)
Vậy phương trình có tập nghiệm là \(S=\left\{2003\right\}\)
Câu 6 :
a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)
=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)
=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)
=> \(15x+10x+x-1=15-9x+1-2x\)
=> \(15x+10x+x-1-15+9x-1+2x=0\)
=> \(37x-17=0\)
=> \(x=\frac{17}{37}\)
Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)
Bài 7 :
a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)
=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
=> \(x-23=0\)
=> \(x=23\)
Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)
c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)
=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
=> \(x+2005=0\)
=> \(x=-2005\)
Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)
e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
=> \(x-100=0\)
Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)
Hướng dẫn:
a) Đặt : \(x^2-2x+1=t\)Ta có:
\(\frac{1}{t+1}+\frac{2}{t+2}=\frac{6}{t+3}\)
b) Đặt : \(x^2+2x+1=t\)
Ta có pt: \(\frac{t}{t+1}+\frac{t+1}{t+2}=\frac{7}{6}\)
c)ĐK: x khác 0
Đặt: \(x+\frac{1}{x}=t\)
KHi đó: \(x^2+\frac{1}{x^2}=t^2-2\)
Ta có pt: \(t^2-2-\frac{9}{2}t+7=0\)
a) Đặt \(x^2-2x+3=v\)
Phương trình trở thành \(\frac{1}{v-1}+\frac{2}{v}=\frac{6}{v+1}\)
\(\Rightarrow\frac{v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}=\frac{6v\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}\)
\(\Rightarrow v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)=6v\left(v-1\right)\)
\(\Rightarrow v^2+v+2v^2-2=6v^2-6v\)
\(\Rightarrow3v^2-7v+2=0\)
Ta có \(\Delta=7^2-4.3.2=25,\sqrt{\Delta}=5\)
\(\Rightarrow\orbr{\begin{cases}v=\frac{7+5}{6}=2\\v=\frac{7-5}{6}=\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2-2x+3=2\\x^2-2x+3=\frac{1}{3}\end{cases}}\)
+) \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
+)\(x^2-2x+3=\frac{1}{3}\)
\(\Rightarrow x^2-2x+\frac{8}{3}=0\)
Ta có \(\Delta=2^2-4.\frac{8}{3}=\frac{-20}{3}< 0\)
Vậy phương trình có 1 nghiệm là x = 1
\(b.\frac{12}{x^2-4}-\frac{x+1}{x-2}+\frac{x+7}{x+2}=0\left(dkxd:x\ne\pm2\right)\\ \Leftrightarrow\frac{12}{x^2-4}-\frac{\left(x+1\right)\left(x+2\right)}{x^2-4}+\frac{\left(x+7\right)\left(x-2\right)}{x^2-4}=0\\\Leftrightarrow 12-x^2-3x-2+x^2+5x-14=0\\ \Leftrightarrow2x-4=0\\\Leftrightarrow 2\left(x-2\right)=0\\\Leftrightarrow x-2=0\\\Leftrightarrow x=2\left(ktmdk\right)\)
Vô nghiệm
\(a.\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\left(dkxd:x\ne\pm1\right)\\\Leftrightarrow \frac{\left(x+1\right)^2}{x^2-1}-\frac{\left(x-1\right)^2}{x^2-1}=\frac{16}{x^2-1}\\\Leftrightarrow \left(x+1\right)^2-\left(x-1\right)^2=16\\\Leftrightarrow \left(x+1-x+1\right)\left(x+1+x-1\right)-16=0\\\Leftrightarrow 4x-16=0\\\Leftrightarrow 4\left(x-4\right)=0\\\Leftrightarrow x-4=0\\ \Leftrightarrow x=4\left(tmdk\right)\)