Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+4x+1\)
\(=\left(2x\right)^2+2.2x.1+1\)
\(=\left(2x+1\right)^2\)
\(1+12x+36x^2\)
\(=1+2.6x+\left(6x\right)^2\)
\(=\left(1+6x\right)^2\)
1: \(=\left(x-1\right)\left(3x+7x^2\cdot2\right)=\left(x-1\right)\cdot x\cdot\left(3+14x\right)\)
2: \(=\left(x-y\right)\left(x^2+1\right)\)
3: \(=4x\cdot\left(x-2y\right)-8y\left(x-2y\right)\)
\(=4\left(x-2y\right)\left(x-2y\right)=4\left(x-2y\right)^2\)
5: \(=x^2\left(25-\dfrac{1}{81}y^2\right)=x^2\left(5-\dfrac{1}{9}y\right)\left(5+\dfrac{1}{9}y\right)\)
a) \(4x^2-12x+9=\left(2x\right)^2-2.2x.3+3^2=\left(2x-3\right)^2\)
b) \(4x^2+4x+1=\left(2x\right)^2+2.2x.1+1^2=\left(2x+1\right)^2\)
c) \(1+12x+36x^2=1^2+2.6x.1+\left(6x\right)^2=\left(1+6x\right)^2\)
d) \(9x^2-24xy+16y^2=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2=\left(3x-4y\right)^2\)
f) \(-x^2+10x-25=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)
g) \(-16a^4b^6-24a^5b^5-9a^6b^4=-\left(16a^4b^6+24a^5b^5+9a^6b^4\right)\)
\(=-\left[\left(4a^2b^3\right)^2+2.4a^2b^3.3a^3b^2+\left(3a^3b^2\right)^2\right]\)
\(=-\left(4a^2b^3+3a^3b^2\right)^2\)
h) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\) \(=\left(5x-2y\right)^2\)
i) \(25x^4-10x^2y+y^2=\left(5x^2\right)^2-2.5x^2.y+y^2=\left(5x^2-y\right)^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
d) \(x^2-2x+4=x^2-2.x.4+4^2\)
\(=\left(x-4\right)^2\)
e) \(25x^2+4y^2-20xy=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
^...^ ^_^ Bài làm có gì ko hiểu bạn cứ hỏi nhé ^_^
mạng của mk bị lỗi bạn xem cái phần cuối cùng nhé xl bạn nhiều vì mạng của mk bị lỗi
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
a) Ta có: \(\left(4x^2-12x+9\right)-1\)
\(=\left(2x-3\right)^2-1^2\)
\(=\left(2x-3-1\right)\left(2x-3+1\right)\)
\(=\left(2x-4\right)\left(2x-2\right)\)
\(=4\left(x-2\right)\left(x-1\right)\)
b) Ta có: \(\left(\frac{x^2}{4}+2xy+4y^2\right)-25\)
\(=\left[\left(\frac{x}{2}\right)^2+2\cdot\frac{x}{2}\cdot2y+\left(2y\right)^2\right]-5^2\)
\(=\left(\frac{x}{2}+2y\right)^2-5^2\)
\(=\left(\frac{x}{2}+2y-5\right)\left(\frac{x}{2}+2y+5\right)\)
c) Ta có: \(1+12x+35x^2\)
\(=35x^2+12x+1\)
\(=35x^2+5x+7x+1\)
\(=5x\left(7x+1\right)+\left(7x+1\right)\)
\(=\left(7x+1\right)\left(5x+1\right)\)
d) Ta có: \(9x^2-24xy+15y^2\)
\(=9x^2-9xy-15xy+15y^2\)
\(=9x\left(x-y\right)-15y\left(x-y\right)\)
\(=\left(x-y\right)\left(9x-15y\right)\)
\(=3\left(x-y\right)\left(3x-5y\right)\)
e) Ta có: \(25x^2-20xy+3y^2\)
\(=25x^2-15xy-5xy+3y^2\)
\(=5x\left(5x-3y\right)-y\left(5x-3y\right)\)
\(=\left(5x-3y\right)\left(5x-y\right)\)
f) Ta có: \(24x^4-10x^2y+y^2\)
\(=24x^4-4x^2y-6x^2y+y^2\)
\(=4x^2\left(6x^2-y\right)-y\left(6x^2-y\right)\)
\(=\left(6x^2-y\right)\left(4x^2-y\right)\)
1/
( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >
= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2
= 2a3
2/
A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 2
=> MinA = 1 <=> x = 1 ; y = 2
B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x
Dấu "=" xảy ra khi x = -2
=> MinB = 2 <=> x = -2
C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y
Dấu "=" xảy ra khi x = 1/5 ; y = 0
=> MinC = 10 <=> x = 1/5 ; y = 0
D = ( x - 3 )2 + ( x - 11 )2
Đặt t = x - 7
D = ( t + 4 )2 + ( t - 4 )2
= t2 + 8t + 16 + t2 - 8t + 16
= t2 + 32 ≥ 32 ∀ t
Dấu "=" xảy ra khi t = 0
=> x - 7 = 0 => x = 7
=> MinD = 32 <=> x = 7
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2
C2. ( x + 2 )2 = ( 2x - 1 )2
<=> ( x + 2 )2 - ( 2x - 1 )2 = 0
<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0
<=> [ 3x + 1 ][ 3 - x ] = 0
<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)
b) ( x + 2 )2 - x + 4 = 0
<=> x2 + 4x + 4 - x + 4 = 0
<=> x2 - 3x + 8 = 0
Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x
=> Phương trình vô nghiệm
C3. a) A = x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = 1 , đạt được khi x = 2
b)B = x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy BMin = 3/4, đạt được khi x = 1/2
c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Dấu " = " xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x + 5 = 0
<=> x = 0 hoặc x = -5
Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5
d) D = x2 + 5y2 - 2xy + 4y + 3
= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
= ( x - y )2 + ( 2y + 1 )2 + 2
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)
=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
Vậy DMin = 2 , đạt được khi x = y = -1/2
C4. a) ( Cái này tìm được Min k tìm được Max )
A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = -6 , đạt được khi x = 2
b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
Vậy BMax = 49/8 , đạt được khi x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy CMax = 9 , đạt được khi x = -1
d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )
C5. a) A = 25x2 - 20x + 7
A = 25x2 - 20x + 4 + 3
A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )
b) B = 9x2 - 6xy + 2y2 + 1
B = ( 9x2 - 6xy + y2 ) + y2 + 1
B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )
c) C = x2 - 2x + y2 + 4y + 6
C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1
C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )
d) D = x2 - 2x + 2
D = x2 - 2x + 1 + 1
D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )
\(a,Sửa:25x^2-20xy+4y^2=\left(5x-2y\right)^2\\ b,=\dfrac{1}{4}\left(\dfrac{1}{9}a^2-b^2\right)=\dfrac{1}{4}\left(\dfrac{1}{3}a-b\right)\left(\dfrac{1}{3}a+b\right)\\ c,=\dfrac{1}{8}\left(a+2\right)^3-1=\left[\dfrac{1}{2}\left(a+2\right)\right]^3-1=\left[\dfrac{1}{2}a+1\right]^3-1\\ =\left(\dfrac{1}{2}a+1-1\right)\left(\dfrac{1}{4}a^2+a+1+\dfrac{1}{2}a+1+1\right)\\ =\dfrac{1}{2}a\left(\dfrac{1}{4}a^2+\dfrac{3}{2}a+3\right)\\ d,=\left(x^3-1\right)\left(x^3+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)