K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2021

\(a,Sửa:25x^2-20xy+4y^2=\left(5x-2y\right)^2\\ b,=\dfrac{1}{4}\left(\dfrac{1}{9}a^2-b^2\right)=\dfrac{1}{4}\left(\dfrac{1}{3}a-b\right)\left(\dfrac{1}{3}a+b\right)\\ c,=\dfrac{1}{8}\left(a+2\right)^3-1=\left[\dfrac{1}{2}\left(a+2\right)\right]^3-1=\left[\dfrac{1}{2}a+1\right]^3-1\\ =\left(\dfrac{1}{2}a+1-1\right)\left(\dfrac{1}{4}a^2+a+1+\dfrac{1}{2}a+1+1\right)\\ =\dfrac{1}{2}a\left(\dfrac{1}{4}a^2+\dfrac{3}{2}a+3\right)\\ d,=\left(x^3-1\right)\left(x^3+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

28 tháng 9 2018

\(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1\)

\(=\left(2x+1\right)^2\)

\(1+12x+36x^2\)

\(=1+2.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

1: \(=\left(x-1\right)\left(3x+7x^2\cdot2\right)=\left(x-1\right)\cdot x\cdot\left(3+14x\right)\)

2: \(=\left(x-y\right)\left(x^2+1\right)\)

3: \(=4x\cdot\left(x-2y\right)-8y\left(x-2y\right)\)

\(=4\left(x-2y\right)\left(x-2y\right)=4\left(x-2y\right)^2\)

5: \(=x^2\left(25-\dfrac{1}{81}y^2\right)=x^2\left(5-\dfrac{1}{9}y\right)\left(5+\dfrac{1}{9}y\right)\)

16 tháng 8 2018

a) \(4x^2-12x+9=\left(2x\right)^2-2.2x.3+3^2=\left(2x-3\right)^2\)

b) \(4x^2+4x+1=\left(2x\right)^2+2.2x.1+1^2=\left(2x+1\right)^2\)

c) \(1+12x+36x^2=1^2+2.6x.1+\left(6x\right)^2=\left(1+6x\right)^2\)

d) \(9x^2-24xy+16y^2=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2=\left(3x-4y\right)^2\)

f) \(-x^2+10x-25=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)

g) \(-16a^4b^6-24a^5b^5-9a^6b^4=-\left(16a^4b^6+24a^5b^5+9a^6b^4\right)\)

                             \(=-\left[\left(4a^2b^3\right)^2+2.4a^2b^3.3a^3b^2+\left(3a^3b^2\right)^2\right]\)

                              \(=-\left(4a^2b^3+3a^3b^2\right)^2\)

h) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\) \(=\left(5x-2y\right)^2\)

i) \(25x^4-10x^2y+y^2=\left(5x^2\right)^2-2.5x^2.y+y^2=\left(5x^2-y\right)^2\)

12 tháng 9 2016
 

\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)

                        \(=\left(x+\frac{1}{4}\right)^2\)

b)  \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)

 

 

\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)

 

                        \(=\left(x+\frac{1}{4}\right)^2\)

b)  \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)

 

 

\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)

 

                        \(=\left(x+\frac{1}{4}\right)^2\)

b)  \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)

 

 

\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)

 

                        \(=\left(x+\frac{1}{4}\right)^2\)

b)  \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)

                                       \(=\left(x+y\right)^2\)
 c) \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2x.3y+\left(3y\right)^2\)
                                     \(=\left(2x-3y\right)^2\)

d) \(x^2-2x+4=x^2-2.x.4+4^2\)

                          \(=\left(x-4\right)^2\)

e) \(25x^2+4y^2-20xy=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)

                                      \(=\left(5x-2y\right)^2\)

hihi ^...^ vui^_^ Bài làm có gì ko hiểu bạn cứ hỏi nhé ^_^

12 tháng 9 2016

mạng của mk bị lỗi bạn xem cái phần cuối cùng nhé xl bạn nhiều vì mạng của mk bị lỗi gianroi

13 tháng 7 2017

a)  2x2 - 98 = 0

     2x2        = 0 + 98

     2x2        = 98

       x2        = 98 : 2

       x2         = 49

       x          = \(\sqrt{49}\)

=>   x   = 7

13 tháng 7 2017

Ta có : 2x2 - 98 = 0

=> 2(x2 - 49) = 0

Mà : 2 > 0

Nên x2 - 49 = 0

=> x2 = 49

=> x2 = -7;7

a) Ta có: \(\left(4x^2-12x+9\right)-1\)

\(=\left(2x-3\right)^2-1^2\)

\(=\left(2x-3-1\right)\left(2x-3+1\right)\)

\(=\left(2x-4\right)\left(2x-2\right)\)

\(=4\left(x-2\right)\left(x-1\right)\)

b) Ta có: \(\left(\frac{x^2}{4}+2xy+4y^2\right)-25\)

\(=\left[\left(\frac{x}{2}\right)^2+2\cdot\frac{x}{2}\cdot2y+\left(2y\right)^2\right]-5^2\)

\(=\left(\frac{x}{2}+2y\right)^2-5^2\)

\(=\left(\frac{x}{2}+2y-5\right)\left(\frac{x}{2}+2y+5\right)\)

c) Ta có: \(1+12x+35x^2\)

\(=35x^2+12x+1\)

\(=35x^2+5x+7x+1\)

\(=5x\left(7x+1\right)+\left(7x+1\right)\)

\(=\left(7x+1\right)\left(5x+1\right)\)

d) Ta có: \(9x^2-24xy+15y^2\)

\(=9x^2-9xy-15xy+15y^2\)

\(=9x\left(x-y\right)-15y\left(x-y\right)\)

\(=\left(x-y\right)\left(9x-15y\right)\)

\(=3\left(x-y\right)\left(3x-5y\right)\)

e) Ta có: \(25x^2-20xy+3y^2\)

\(=25x^2-15xy-5xy+3y^2\)

\(=5x\left(5x-3y\right)-y\left(5x-3y\right)\)

\(=\left(5x-3y\right)\left(5x-y\right)\)

f) Ta có: \(24x^4-10x^2y+y^2\)

\(=24x^4-4x^2y-6x^2y+y^2\)

\(=4x^2\left(6x^2-y\right)-y\left(6x^2-y\right)\)

\(=\left(6x^2-y\right)\left(4x^2-y\right)\)

11 tháng 10 2020

1/

( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2

= 2a3 

2/

A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinA = 1 <=> x = 1 ; y = 2

B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = -2

=> MinB = 2 <=> x = -2

C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y

Dấu "=" xảy ra khi x = 1/5 ; y = 0

=> MinC = 10 <=> x = 1/5 ; y = 0

D = ( x - 3 )2 + ( x - 11 )2

Đặt t = x - 7

D = ( t + 4 )2 + ( t - 4 )2

    = t2 + 8t + 16 + t2 - 8t + 16

    = t2 + 32 ≥ 32 ∀ t

Dấu "=" xảy ra khi t = 0

=> x - 7 = 0 => x = 7

=> MinD = 32 <=> x = 7

11 tháng 10 2020

Cảm ơn bn nhiều nhé!

12 tháng 8 2015

a) x^4 - x^3 - x + 1 

= x^3 ( x - 1 ) - ( x- 1 )

= ( x^3 - 1 )(x - 1)

= ( x- 1 )^2 (x^2 + x +  1 )

 

12 tháng 8 2015

a)x4-x3-x+1

=x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)(x-1)(x2+x+1)

=(x-1)2(x2+x+1)

b)5x2-4x+20xy-8y

(sai đề)

 

9 tháng 8 2020

C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2

C2. ( x + 2 )2 = ( 2x - 1 )2

<=> ( x + 2 )2 - ( 2x - 1 )2 = 0

<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0

<=> [ 3x + 1 ][ 3 - x ] = 0

<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)

b) ( x + 2 )2 - x + 4 = 0

<=> x2 + 4x + 4 - x + 4 = 0

<=> x2 - 3x + 8 = 0

Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x 

=> Phương trình vô nghiệm

C3. a) A =  x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = 1 , đạt được khi x = 2

b)B =  x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy BMin = 3/4, đạt được khi x = 1/2

c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 36 

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Dấu " = " xảy ra <=> x2 + 5x = 0

                          <=> x( x + 5 ) = 0

                          <=> x = 0 hoặc x + 5 = 0

                          <=> x = 0 hoặc x = -5

Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5

d) D =  x2 + 5y2 - 2xy + 4y + 3

= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2

= ( x - y )2 + ( 2y + 1 )2 + 2

\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)

=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)

Vậy DMin = 2 , đạt được khi x = y = -1/2

C4.  a) ( Cái này tìm được Min k tìm được Max )

A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = -6 , đạt được khi x = 2

b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8

\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)

Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4

Vậy BMax = 49/8 , đạt được khi x = -3/4

c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9 

\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy CMax = 9 , đạt được khi x = -1

d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )

C5. a) A = 25x2 - 20x + 7

A = 25x2 - 20x + 4 + 3

A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )

b) B = 9x2 - 6xy + 2y2 + 1

B = ( 9x2 - 6xy + y2 ) + y2 + 1

B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )

c) C = x2 - 2x + y2 + 4y + 6 

C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1

C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )

d) D = x2 - 2x + 2 

D = x2 - 2x + 1 + 1

D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )