Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)M = 1 + 3 + 32 +....+ 3118 + 3119
M = (1 + 3 + 32)+(33+34+35)+...+(3117+3118+3119)
M = 1x(1+3+9)+33x(1+3+9)+...+3117x(1+3+9)
M = 1x13+33x13+...+3117x13
M = 13x(1+33+...+3117)
Vậy M chia hết cho 13
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
1.
\(A=7+7^2+7^3+...+7^{78}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)
\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)
\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8
Vậy A chia hết cho 8 (đpcm)
\(A=3+3^2+3^3+...+3^{155}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)
\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)
\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121
Vậy A chia hết cho 121 (đpcm)
a)A=(2+22)+(23+24)+...(29+210)
A=2(2+1)+23(1+2)+....+29(2+1)
A=3(2+23+25+27+29)
Vay A chia het cho 3(khi chia 3 duoc 2+23+25+27+29du 0)
b)A=(2+22+23+24+25)+(26+27+28+29+210)
A=2(1+2+22+23+24)+26(1+2+22+23+24)
A=31(2+26) luon chia het cho 31 :))
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
1) Chứng tỏ:
a) ab + ba chia hết cho 11.
Ta có: ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11( a + b )
Vì 11( a + b ) chia hết cho 11 nên ab + ba chia hết cho 11 ( đpcm )
b) ab - ba chia hết cho 9.
Ta có: ab - ba = 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9( a - b )
Vì 9( a - b ) chia hết cho 9 nên ab - ba chia hết cho 9.
2) Chứng tỏ:
a) Nếu ( ab + cd ) chia hết cho 99 thì abcd chia hết cho 99.
Ta có: ab + cd chia hết cho 99
=> 99ab + ab + cd chia hết cho 99.
=> 100ab + cd chia hết cho 99.
=> abcd chia hết cho 99 ( đpcm )
b) Nếu ( abc + def ) chia hết cho 37 thì abcdef chia hết cho 37.
Ta có: abcdef = 1000abc + def = 999abc + abc + def = 37.27abc + (abc + def)
Vì 37.27abc chia hết cho 37 nên nếu abc + def chia hết cho 37 thì abcdef chia hết cho 37.
~ Huhu, cho mình xin lỗi, phần 3 mình không có thời gian để làm TwT ~
\(A=n^2+n+1=n\left(n+1\right)+1\)
a)Vì n và n+1 là 2 số tự nhiên liên tiếp, mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn
=>n(n+1) là số chẵn
=>n(n+1)+1 là số lẻ
=>A ko chia hết cho 2 (đpcm)
b)Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9
=>n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9;0
=>n(n+1) có thể có tận cùng là: 0;2;6;2;0;0;2;6;0
Hay n(n+1) có thể có tận cùng là: 0;2;6
=>n(n+1)+1 có thể có tận cùng là 1;3;7
=>A ko chia hết cho 5 (đpcm)
ta có : A=2+2^2+2^3+...+2^2010 chia ra thành các nhóm , mỗi nhóm có 2 số hạng
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
A= 2(1+2)+2^3(1+2)+...+2^1009(1+2)
A=2.3+2^3.3+...+2^2009.3
A=3(2+2^3+...+2^2009) chia hết cho 3
phần b tương tự
đây lak toán lớp 6=>ông hok lớp 6 , lừa tui dễ lắm hả???
#G2k6#
\(A=2+2^2+2^3+....+2^{2009}+2^{2010}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{2009}.\left(1+2\right)\)
\(A=2.3+2^3.3.....+2^{2009}.3\)
\(A=3\left(2+2^3+....+2^{2009}\right)⋮3\)