Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}+\frac{1}{6561}\)
\(3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(3A-A=\left[1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right]-\left[\frac{1}{3}+\frac{1}{9}+...+\frac{1}{6561}\right]\)
\(2A=1-\frac{1}{6561}=\frac{6560}{6561}\)
\(A=\frac{6560}{6561}:2\)
\(A=\frac{3280}{6561}\)
Vậy : ...
đặt A = 1+3+9+27+....+2187+6561
=>A = 30 + 31 + 32 + 33 + .. . +37 + 38
3A = 31 + 32 + 33 + ... + 38 + 39
3A - A = (31 + 32 + 33 + ... + 38 + 39)-(30 + 31 + 32 + 33 + .. . +37 + 38 )
2A = 39 - 1
A=\(\frac{3^9-1}{2}=\frac{19682}{2}=9841\)
Bài làm:
Ta có: \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}+\frac{1}{6561}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}+\frac{1}{3^8}\)
=> \(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}+\frac{1}{3^7}\)
=> \(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\)
<=> \(2A=1-\frac{1}{3^8}=\frac{3^8-1}{3^8}\)
=> \(A=\frac{3^8-1}{3^8.2}\)
Bài làm :
Ta có :
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)
\(\Rightarrow3\times A=\frac{1\times3}{3}+\frac{1\times3}{9}+\frac{1\times3}{27}+...+\frac{1\times3}{6561}\)
\(3\times A=1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}\)
\(3\times A=1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}+\left(\frac{1}{6561}-\frac{1}{6561}\right)\)
\(3\times A=1+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}+\frac{1}{6561}\right)-\frac{1}{6561}\)
\(3\times A=1+A-\frac{1}{6561}\)
\(\Rightarrow2\times A=1-\frac{1}{6561}\)( Trừ bỏ A ở cả 2 vế )
\(2\times A=\frac{6560}{6561}\)
\(A=\frac{6560}{6561}\div2=\frac{3280}{6561}\)
Vậy A=3280/6561
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(A=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}+\dfrac{1}{6561}\)
\(3A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}\)
Lấy 3A - A ta được :
\(2A=1-\dfrac{1}{6561}=\dfrac{6560}{6561}\Leftrightarrow A=\dfrac{6560}{6561}:2\)
\(\Leftrightarrow A=\dfrac{6560}{6561}.\dfrac{1}{2}=\dfrac{3280}{6561}\)
tìm số số hạng : (6561-1) / 2 +1 =3281
tổng của dãy (6561 + 1) *3281 / 2 =10764961
số các số hạng là : (2187 - 1): 2 +1 = 1094
a = (1+2187) x 1094 : 2 = 1196836
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\)
\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}\)
\(\Rightarrow3A=3.\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\) \(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^8}\)
\(\Rightarrow2A=1-\frac{1}{3^8}\) \(\Rightarrow A=\frac{1-\frac{1}{3^8}}{2}\)
k cho mik đi mn!Nguyễn Như Quỳnh!
\(3A=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\)
\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{6561}\right)\)
\(2A=\dfrac{6560}{6561}\)
\(A=\dfrac{3280}{6561}\)