K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

a)

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}\)

 

P/s: Cj chỉ biết làm ý a thôi nhé! Có j ko hiểu cmt nhé!

25 tháng 6 2021

mình cần câu b lắm ,mà cũng cảm ơn bạn nha

 

8 tháng 6 2017

Đặt A = \(1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3....n}\)

Ta có: \(\frac{1}{1.2}=\frac{1}{1.2}\)

\(\frac{1}{1.2.3}=\frac{1}{2.3}\)

\(\frac{1}{1.2.3.4}< \frac{1}{3.4}\)

..............

\(\frac{1}{1.2.3....n}< \frac{1}{\left(n-1\right)n}\)

Cộng vế với vế ta được:

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1+1-\frac{1}{n}=2-\frac{1}{n}< 2\)(đpcm)

1 tháng 3 2018

\(S=\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+........+\dfrac{99}{1.2.......100}\)

\(=\dfrac{1}{2!}+\dfrac{2}{3!}+....+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+.......+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+....+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

\(\Leftrightarrow S< 1\left(đpcm\right)\)

15 tháng 8 2016

3F= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>F 

15 tháng 8 2016

H=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)

=> 4H=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))

=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)

=n(n+1)(n+2)(n+3)

 

DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)Hướng dẫn giảiCách 1:Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhiên liên tiếp, khi đó:Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1= 1.2.3 - 0.1.2a2 = 2.3 → 3a2 = 2.3.3 → 3a2= 2.3.4 - 1.2.3a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4…………………..an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n...
Đọc tiếp

DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.

Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

Hướng dẫn giải

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhiên liên tiếp, khi đó:

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1= 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2= 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

3(a1 + a2 + ... + an) = n(n + 1)(n + 2) ⇒ A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3}

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3

3A =  1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)]

3A = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1)

3A = n(n + 1)(n + 2)

\Rightarrow A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3}

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

Hướng dẫn giải

Áp dụng tính kế thừa của bài 1 ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

\Rightarrow B = \frac{{\left( {n - 1} \right).n.\left( {n + 1} \right)\left( {n + 2} \right)}}{4}

Bài 3. Tính C = 1.4 + 2.5 + 3.6 + 4.7 + … + n(n + 3)

Hướng dẫn giải

Ta thấy: 1.4 = 1.(1 + 3)

2.5 = 2.(2 + 3)

3.6 = 3.(3 + 3)

4.7 = 4.(4 + 3)

…….

n(n + 3) = n(n + 1) + 2n

Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n

C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n

C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)

⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n)

3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)

3C = n(n + 1)(n + 2) + \frac{3\left(2n\ +\ 2\right)n}{2}

⇒ C = \frac{n(n+1)(n+2)}{3} + \frac{3\left(2n\ +\ 2\right)n}{2} = \frac{n(n+1)(n+5)}{3}

Bài 4: Tính D = 1+ 22 + 32 + .... + n2

Hướng dẫn giải

Nhận xét: Các số hạng của bài 1 là tích của hai số tự nhiên liên tiếp, còn ở bài này là tích của hai số tự nhiên giống nhau. Do đó ta chuyển về dạng bài tập 1:

Ta có:

A = 1.2 + 2.3 + 3.4 + ...+ n(n + 1)

A = 1.(1 + 1) + 2.(1 + 2) + 3.(1 + 3) + .... + n.(n + 1)

A = 12 + 1.1 + 22 + .1 + 32 + 3.1 + ... + n2 + n.1

A = (12 + 22 + 32 + .... + n2) + (1 + 2 + 3 + ... + n)

Mặt khác theo bài tập 1 ta có:

A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3} và 1 + 2 + 3 + .... + n = \frac{{n\left( {n + 1} \right)}}{2}

⇒D = 12 + 22 + 32 + .... + n2 = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3} - \frac{{n\left( {n + 1} \right)}}{2} = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}

Bài 5: Tính E = 13 + 23 + 33 + ... + n3

Hướng dẫn giải

Tương tự bài toán ở trên, xuất phát từ bài toán 2, ta đưa tổng B về tổng E:

B = 1.2.3 + 2.3.4 + 4.5.6 + ... + (n - 1)n(n + 1)

B = (2 - 1).2.(2 + 1) + (3 -1).3.(3 +1) + ....+ (n - 1).n.(n + 1)

B = (23 - 2) + (33 - 3) + .... + (n3 - n)

B = (23 + 33 + .... +n3) - (2 + 3 + ... + n)

B = (13 + 23 + 33 + ... + n3) - (1 + 2 + 3 + ... + n)

B = (13 + 23 + 33 + ... + n3) - \frac{n(n + 1)}{2}

⇒ 13 + 23 + 33 + ... + n3 = B + \frac{n(n + 1)}{2}

Mà B = \frac{{\left( {n - 1} \right).n\left( {n + 1} \right)\left( {n + 2} \right)}}{4}

⇒ E = 13 + 23 + 33 + ... + n3 = \frac{{\left( {n - 1} \right).n\left( {n + 1} \right)\left( {n + 2} \right)}}{4} + \frac{n(n + 1)}{2}

3
18 tháng 10 2021

giúp mik

18 tháng 10 2021

mình thấy bài bạn có đáp án hết rồi mà?

2 tháng 3 2020

Bài 1:

\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)

\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)

\(=1.2\left(3-0\right)+2.3\left(4-1\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

\(=n.\left(n+1\right).\left(n+2\right)\)

\(\Leftrightarrow A=\frac{\left[n.\left(n+1\right).\left(n+2\right)\right]}{3}\)

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>A=[n.(n+1).(n+2)] /3