K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2020

\(a, 10^{n+1} -6.10 ^n\)

= \(10^n (10-6)=4.10^n\)

\(B/ 2^{n+3} + 2^{n+2} - 2^{n+1} +2^n\)

= \(2^n (2^3+2^2-2+1)\)

= \(2^n (8+4-2+1)\)

\(= 11.2^n\)

\(C/ 90.10^k - 10^{k +2} + 10^{k +1} \)

\(= 10^k(90-2+1)\)

= \(89.10^k\)

\(D/ 2,5 . 5^{n-3} . 10+5^n -6 .5^{n-1}\)

\(= 5.5.5^{n-3} +5^n-6.5^{n-1}\)

= \(5^2 .5^{n-3}+5^n-6.5^{n-1} \)

= \(5^{n-3+2}+5^n -6.5^{n-1}\)

\(= 5^{n-1}(1+5-6)\)

= \(5^{n-1}.0\)

= 0

24 tháng 5 2020

cảm ơn ạ

13 tháng 7 2015

\(d,2,5.5^{n-3}.2.5+5^n-6.5^{n-1}=5.5.5^{n-3}+5^n-6.5^{n-1}=5^2.5^{n-3}+5^n-6.5^{n-1}\)

  \(=5^{n-3+2}+5^n-6.5^{n-1}=5^{n-1}\left(1+5-6\right)=5^{n-1}.0=0\)

13 tháng 7 2015

a, \(10^{n+1}-6.10^n=10^n\left(10-6\right)=4.10^n\)

b. \(2^{n+3}+2^{n+2}-2^{n+1}+2^n=2^n\left(2^3+2^2-2+1\right)=2^n\left(8+4-2+1\right)=11.2^n\)

 

a: \(10^{n+1}=10^n\cdot10\)

b: \(2^{n+3}+2^{n+1}-2^{n+1}+2^n\)

\(=2^n\cdot8+2^n=9\cdot2^n\)

c: \(90\cdot10^k-10^{k+2}+10^{k+1}\)

\(=90\cdot10^k+10^k\cdot10-10^k\cdot100=0\)

10 tháng 2 2020

a,3-1.3n+6.3n-1=7.36

=>3n-1+6.3n-1=7.36

=>3n-1.(1+6)=7.36

=>7.3n-1=7.36

=>n-1=6

=>n=7

28 tháng 9 2018

nhé

a)(2x-1)6=(2x-1)8

=> (2x-1)8-(2x-1)6=0

=> (2x-1)6.((2x-1)2-1)=0  

+)th1(2x-1)6=0

+)th2((2x-1)2-1)=0

28 tháng 9 2018

a) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)

\(\Rightarrow\left(2x-1\right)\in\left\{\pm1;0\right\}\)

TH1 : \(2x-1=0\)                       TH2 : \(2x-1=-1\)                      TH3 : \(2x-1=1\)

                   \(2x=1\)                                          \(2x=0\)                                               \(2x=2\)

                      \(x=\frac{1}{2}\)                                          \(x=0\)                                                  \(x=1\)

Vậy \(x\in\left\{\frac{1}{2};0;1\right\}\)

b) Tương tự

Ta có:\(2^n+2^{n+1}+2^{n+2}+...+2^{n+m}=2^{n+m+1}-2^n\)

Áp dụng:

\(A=1+2+2^2+...+2^{30}=2^{31}-1\)

    \(\Rightarrow A+1=2^{31}\)

Bài 1: 

\(A=-\left|x-\dfrac{7}{2}\right|+\dfrac{1}{2}\le\dfrac{1}{2}\forall x\)

Dấu '=' xảy ra khi x=7/2

Bài 2: 

a: \(A=2^{21}-2^{18}=2^{18}\cdot\left(2^3-1\right)=2^{17}\cdot14⋮14\)

b: \(B=2^6\cdot5^6-5^6\cdot5=5^6\cdot59⋮59\)

c: \(C=5^n\cdot25+5^n\cdot5+5^n=5^n\cdot31⋮31\)

26 tháng 5 2017

Bài 1:
a)1/9 x 27n= 3n

1/9=3n:27n

3n:27n=1/9

1n/9n=1/9

=>n=1

26 tháng 5 2017

\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)

=>2n-1=25=>n-1=5=>n=5+1=6

vậy......

~~~~~~~~~~~~~~~

21 tháng 10 2019

a) Câu này thiếu đề nhé bạn.

b) \(\frac{25}{5^n}=5\)

\(\Rightarrow5^n=25:5\)

\(\Rightarrow5^n=5\)

\(\Rightarrow5^n=5^1\)

\(\Rightarrow n=1\)

Vậy \(n=1.\)

c) \(\frac{81}{\left(-3\right)^n}=-243\)

\(\Rightarrow\left(-3\right)^n=81:\left(-243\right)\)

\(\Rightarrow\left(-3\right)^n=-\frac{1}{3}\)

\(\Rightarrow\left(-3\right)^n=\left(-3\right)^{-1}\)

\(\Rightarrow n=-1\)

Vậy \(n=-1.\)

e) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)

\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)

\(\Rightarrow n=4\)

Vậy \(n=4.\)

f) \(\left(-\frac{3}{4}\right)^n=\frac{81}{256}\)

\(\Rightarrow\left(-\frac{3}{4}\right)^n=\left(-\frac{3}{4}\right)^4\)

\(\Rightarrow n=4\)

Vậy \(n=4.\)

Chúc bạn học tốt!

22 tháng 10 2019

d) \(\frac{1}{2}.2^n+4.2^n=9.2^5\)

\(\Rightarrow2^n.\left(\frac{1}{2}+4\right)=288\)

\(\Rightarrow2^n.\frac{9}{2}=288\)

\(\Rightarrow2^n=288:\frac{9}{2}\)

\(\Rightarrow2^n=64\)

\(\Rightarrow2^n=2^6\)

\(\Rightarrow n=6\)

Vậy \(n=6.\)

g) \(-\frac{512}{343}=\left(-\frac{8}{7}\right)^n\)

\(\Rightarrow\left(-\frac{8}{7}\right)^n=\left(-\frac{8}{7}\right)^3\)

\(\Rightarrow n=3\)

Vậy \(n=3.\)

h) \(5^{-1}.25^n=125\)

\(\Rightarrow5^{-1}.5^{2n}=5^3\)

\(\Rightarrow5^{-1+2n}=5^3\)

\(\Rightarrow-1+2n=3\)

\(\Rightarrow2n=3+1\)

\(\Rightarrow2n=4\)

\(\Rightarrow n=4:2\)

\(\Rightarrow n=2\)

Vậy \(n=2.\)

k) \(3^{-1}.3^n+6.3^{n-1}=7.3^6\)

\(\Rightarrow3^{n-1}+6.3^{n-1}=7.3^6\)

\(\Rightarrow3^{n-1}.\left(1+6\right)=7.3^6\)

\(\Rightarrow3^{n-1}.7=7.3^6\)

\(\Rightarrow n-1=6\)

\(\Rightarrow n=6+1\)

\(\Rightarrow n=7\)

Vậy \(n=7.\)

Chúc bạn học tốt!