Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)=1/2*2/3......*19/20
=1/20
b)=3/2*4/3......*2008/2007
=3/2007
1/2005 x(1-1/2006)x(1-2007)x(1-1/2008)
=1/2005x2005/2006x2006/2007-2007/2008
Rút gọn rồi ta được kết quả
1/2008
a. 2006/2005 x 2007/2006 x 2008/2007 x 2009/2008 x 2010/2009'
= 2006 x 2007 x 2008 x 2009 x 2010 / 2005 x 2006 x 2007 x 2008 x 2009
= 2010/2005
= 402/401
\(\left(1+\frac{1}{2005}\right)x\left(1+\frac{1}{2006}\right)x\left(1+\frac{1}{2007}\right)x\left(1+\frac{1}{2008}\right)x\left(1+\frac{1}{2009}\right)\)
\(=\frac{2006}{2005}x\frac{2007}{2006}x\frac{2008}{2007}x\frac{2009}{2008}x\frac{2010}{2009}\)
\(=\frac{2010}{2005}\)
\(=\frac{402}{401}\)
Ta có \(\frac{1}{2004}.\left(1-\frac{1}{2005}\right).\left(1-\frac{1}{2006}\right).\left(1-\frac{1}{2007}\right).\left(1-\frac{1}{2008}\right)\)
\(=\frac{1}{2004}.\frac{2004}{2005}.\frac{2005}{.2006}.\frac{2006}{2007}.\frac{2007}{2008}\)
\(=\frac{1.2004.2005.2006.2007}{2004.2005.2006.2007.2008}\)
\(=\frac{1}{2008}\)
\(\frac{1}{2004}\cdot\left(1-\frac{1}{2005}\right)\cdot\left(1-\frac{1}{2006}\right)\cdot\left(1-\frac{1}{2007}\right)\cdot\left(1-\frac{1}{2008}\right)\)
\(=\frac{1}{2004}\cdot\frac{2004}{2005}\cdot\frac{2005}{2006}\cdot\frac{2006}{2007}\cdot\frac{2007}{2008}\)
\(=\frac{1\cdot2004\cdot2005\cdot2006\cdot2007}{2004\cdot2005\cdot2006\cdot2007\cdot2008}=\frac{1}{2008}\)
=(1-2-3+4)+(5-6-7+8)+...+(2005-2006-2007+2008)+2009
=2009
Mình học lớp 5 rất là lâu rồi nhưng chưa thấy bài này bao giờ . Bạn học trường nào đấy ?
Trả lời:
\(\frac{1}{2004}\times\left(1-\frac{1}{2005}\right)\times\left(1-\frac{1}{2006}\right)\times...\times\left(1-\frac{1}{2014}\right)\)
\(=\frac{1}{2004}\times\frac{2004}{2005}\times\frac{2005}{2006}\times...\times\frac{2013}{2014}\)
\(=\frac{1}{2014}\)
a) \(\frac{2004}{2005}=1-\frac{1}{2005}\);\(\frac{2005}{2006}=1-\frac{1}{2006}\)
Vì \(\frac{1}{2005}>\frac{1}{2006}\)=>\(1-\frac{1}{2005}< 1-\frac{1}{2006}\)=>\(\frac{2004}{2005}< \frac{2005}{2006}\)
\(A=\left(1+\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right).\left(1+\frac{1}{2005}\right).\left(1-\frac{1}{2006}\right).\left(1+\frac{1}{2007}\right).\left(1-\frac{1}{2008}\right)\)
\(=\frac{2004}{2003}.\frac{2003}{2004}.\frac{2006}{2005}.\frac{2005}{2006}.\frac{2008}{2007}.\frac{2007}{2008}\)
\(=1\)