Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a+b+\left(a-b\right)\right).\left(a+b-\left(a-b\right)\right)\)
\(=2a.2b\)
\(=4ab\)
Câu 1:
a) (a +b )2 - ( a -b )2
=a2+b2-a2+b2
=2b2
b) (a + b )3- ( a - b )3 - 2b3
=a3+b3-a+b3-2b3
=a3-a
c) ( x+y+z)2 - 2(x+y+z)(x+y) + (x + y )2
=x2+xy+xz+xy+y2+yz+xz+yz+z2-2.(x2+xy+xz+xy+y2+yz)+x2+xy+xy+y2
=x2+y2+z2+2xy+2xz+2yz-2x2-2y2-4xy-2xz-2yz+x2+2xy+y2
=0
a)=(a2+2ab+b2) +(b2-c2) +(ab+ac)-c2
=(a+b)2 -c2 +(b+c)(b-c) +a(b+c)
=(a+b-c)(a+b+c)+(b+c)(a+b-c)
=(a+b-c)(a+2b+2c)
c)a4+2a3+1
=a4 +a3+a3+a2-a2-a+a+1
=a3(a+1)+a2(a+1)-a(a+1)+(a+1)
=(a+1)(a3+a2-a+1)
d)x5+x+1
=(x5+x4+x3)-x4-x3-x2+x2+x+1
=x3(x2+x+1) -x2(x2+x+1) +(x2+x+1)
=(x2+x+1)((x3-x2+1)
e)x8+x4+1
=(x4)2 +2x4+1-x4
=(x4+1)2 -x4
=(x4+1+x2)(x4+1-x2)
=(x4+2x2+1-x2)(x4-x2+1)
=[(x2+1)2-x2 ](x4-x2+1)
=(x2+1-x)(x2+1 )(x4-x2+1)
Mình làm câu c trước để bạn hình dung ra nhé, câu a tương tự:
c) \(7\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(8-1\right)\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left[\left(2^3-1\right)\left(2^3+1\right)\right]\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^6-1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^{12}-1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^{12}-1\right)\left(2^{24}+1\right)\)
\(=2^{36}-1\)
b) \(\left(x^2-x+4\right)\left(x^2+x+1\right)\left(x^2-1\right)\)
\(=\left(x^2.x^2.x^2\right).\left(-x+4+x+1+\left(-1\right)\right)\)
\(=x^8.\left(-4\right)\)
\(a,\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1\)
Bài 1 :
Ta có : \(VP=\left(a+b\right)^4=\left(a+b\right)\left(a+b\right)^3\)
\(=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
=> HĐT ko đc CM
Bài 2 :
a, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)
\(=x^3+2x^2+4x-2x^2-4x-8-x+1+7=x^3-x=x\left(x^2-1\right)\)
Sửa đề : b, \(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8\left(x^3-1\right)-8x^3+1=8x^3-8-8x^3+1=-7\)
Xin phép chủ nahf cho mjnh sửa đề:D
\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
a,\(\left(a+b\right)^4\)
\(=\left[\left(a+b\right)^2\right]^2\)
\(=\left(a^2+2ab+b^2\right)^2\)
\(=\left[\left(a^2+2ab\right)+b^2\right]^2\)
\(=\left(a^2+2ab\right)^2+2\left(a^2+2ab\right)b^2+b^4\)
\(=a^4+4a^3b+4a^2b^2+2a^2b^2+4ab^3+b^4\)
\(=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
Bài 2:
a,\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)
\(=\left(x^3-8\right)-\left(x-1\right)+7\)
b,\(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x-1\right)\)
\(=8\left(x^3-1\right)-\left(8x^3-1\right)\)
\(=8x^3-8-8x^3+1\)
\(=-7\)
A = (x - 1)(x + 3) - (x - 2)(5x - 4)
A = x2 + 2x - 3 - 5x2 + 14x - 8
A = -4x2 + 16x - 11
B = (3a - 2b)(9a2 + 6ab - 4b2)
B = 27a3 + 18a2b - 12ab2 - 18a2b - 12ab2 + 8b3
B = 27a3 -24ab2 + 8b3
C = (x - 1)(x + 1) - (2x - 3)(4 - 5x)
C = x2 - 1 - 8x + 10x + 12 - 15x
C = x2 - 13x + 11
a) x(2x^2 -3) -x^2 (5x+1 ) + x^2
<=> 2x^3 -3x -5x^3 -x^2 +x^2
<=>3x^3 -3x
b) 3x(x-2) -5x(1-x)-8(x^2 -3)
=3x^2 -6x -5x +5x^2 -8x^2 +24
= -11x+24
a) \(\left(x+3\right)\left(x-1\right)-2\left(x+3\right)^2+\left(x-4\right)\left(x+4\right)\)
\(=x^2-x+3x-3-2\left(x^2+6x+9\right)+x^2-16\)
\(=2x^2+2x-19-2x^2-12x-18\)
\(=-10x-37\)
b) \(\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{\left(5^2-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{5^{32}-1}{24}\)
a) (x+3)(x-1)-2(x+302)+(x-4)(x+4)=x2+2x-3-2x-1800+x2-16=2x2-1819
b)...=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)=(5^4-1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)
=(5^8-1)(5^8+1)(5^16+1)/(5^2-1)=(5^16-1)(5^16+1)/(5^2-1)=(5^32-1)/(5^2-1)
a) (x - 1)(x + 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x2 - 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x4 - 1)(x4 + 1)(x8 + 1)
= (x8 - 1)(x8 + 1)
= x16 - 1
b) (a2 - 2b)(a2 + 2b)(a4 + 4b2)(a8 + 16b4)
= (a4 - 4b2)(a4 + 4b2)(a8 + 16b4)
= (a8 - 16b4)(a8 + 16b4)
= a16 - 256b8