K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

Ta có a^5-a luôn chia hết cho 6

suy ra a^5+...+d^5 -2016 chia hết cho 6

dpcm

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

2 tháng 6 2019

P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )

Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3

Xét 4 số a,b,c,d khi chia cho 4

- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4

- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3

có hiệu chia hết cho 2. do đó P chia hết cho 4

2 tháng 6 2019

#)Giải : 

Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3

Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4 

Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ 

Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2 

=> Tích trên chia hết cho 3 và 4 

Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12 

                           #~Will~be~Pens~#

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......