K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

6+6+6+6+6+6+6.....=6 x n

4 tháng 10 2017

6000 phải ko

16 tháng 11 2017
= 4 đó bạn
19 tháng 2 2021

4 đó bạn

HỌC TỐT!

15 tháng 3 2023

- Vì N là số tự nhiên có hai chữ số nên đặt \(N=\overline{ab}\) \(\left(0< a\le9;0\le b\le9;a,b\in N\right)\)

Ta có \(S\left(N\right)=S\left(\overline{ab}\right)=ab\) ; \(P\left(N\right)=P\left(\overline{ab}\right)=a+b\)

Vì \(N=S\left(N\right)+P\left(N\right)\) nên \(\overline{ab}=ab+a+b\)

\(\Rightarrow10a+b=ab+a+b\)

\(\Rightarrow9a=ab\Rightarrow b=9\) (vì a khác 0)

Vậy chữ số hàng đơn vị của N là 9 ---> chọn E

16 tháng 3 2023

em cảm ơn ạ, nhưng có thể cho em hỏi tại sao suy ra được 10a+b=ab+a+b vậy ạ?

16 tháng 7 2015

Có 120 cách cho mỗi số 3; 4; 5; 6 đứng đầu, => có 120 . 4 = 480 (số)

NV
13 tháng 10 2019

Câu b ra (15.10^n)-3 nhé, đang xài đt ko gõ công thức được

13 tháng 10 2019

Câu a hình như là vô hạn dấu căn phải ko? Nếu vô hạn thì em nhớ có một cách làm như sau:

a)Đặt \(a=\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{...}}}}>0\)

Bình phương 2 vế lên suy ra \(a^2=6+a\Rightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(L\right)\end{matrix}\right.\)

Vậy a = 3

Em làm đúng không ạ? @Nguyễn Việt Lâm

8 tháng 4 2018

Đặt A = {1, 2, 3, 4, 5, 6 }

a.Tập hợp A gồm 6 phần tử. Để lập được số tự nhiên có 6 chữ số khác nhau thì mỗi số như vậy được coi là một chỉnh hợp chập 6 của 6 phần tử.

\(\text{Vậy các số đó là: }A_6^6=\frac{6!}{\left(6-6\right)!}=6!=720\text{(số)}\)

b. *Cách 1:

Số chẵn là các số có tận cùng 2, 4, 6

- Gọi số chẵn 6 chữ số khác nhau là abcdef

- Với f = 2, 4, 6 nên có 3 cách chọn f ( f ≠ a, b, c, d, e)

Có 5 cách chọn chữ số a;

Có 4 cách chọn chữ số b (b ≠ a)

Có 3 cách chọn chữ số c(c ≠ a, b);

Có 2 cách chọn chữ số d (d ≠ a, b, c);

Có 1 cách chọn chữ số e (e ≠ a, b, c, d);

Vậy theo quy tắc nhân có: 3.1.2.3.4.5 = 3.5! = 360 (số)

*Cách 2:

Với f = 2, 4, 6 có 3 cách chọn f

a, b, c, d, e ≠ f nên có = 5! cách chọn.

Vậy số cách chọn: 5!.3 = 360 (số)

Gọi số lẻ có 6 chữ số a1b1c1d1e1f1

Ta có: f1 = 1, 3, 5 nên có 3 cách chọn a1, b1, c1, d1, e1 ≠ f1 nên có A 55 cách chọn.

Vậy ta có: 3.5! = 360 số

c. Để có một số có 6 chữ số khác nhau lập từ 6 chữ số trên và nhỏ hơn 432.000 ta có thể:

- Chọn chữ số hàng trăm nghìn nhỏ hơn 4: có 3 cách chọn

Với 5 chữ số còn lại có 5! Cách chọn. Số các số như vậy là:

n1 = 3 .5! = 360 số.

- Chọn chữ số đầu là 4, chữ số thứ hai nhỏ hơn 3 và 4 chữ số còn lại.

Số các số như vậy là: n2 = 2.4! = 48 số

- Chọn hai số đầu là 43 và chữ số thứ 3 nhỏ hơn 2:

Số các số như vậy là: n3 = 3! = 6 số

Vậy số các số nhỏ hơn 432.000 là:

n = n1 + n2 + n3= 360 + 48 + 6 = 414 số.

11 tháng 3 2016

hm...chắc là số 12485

12 tháng 9 2019

ez

a:b có thể là 1 số tự nhiên bất kì nên a,b \in N*

vậy có 

hm.......................................................................................................................................khó khăn đây

có vô số

28 tháng 8 2020

A=\(11...1\) (2n chữ số 1)+11...1(n+1 số 1) +66.6 (n số ^) +8

=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot11...1\) (n số 1) +8

=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot\frac{10^n-1}{9}+8\)

=\(\frac{10^{2n}-1+10^n\cdot10-1+6\cdot10^n-6+72}{9}\)

=\(\frac{10^{2n}+16\cdot10^n+64}{9}\)

=\(\frac{\left(10^n+8\right)^2}{9}\)

=\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)

Ta thấy: 10+8 có tổng các chữ số =9

=> 10n+8 chia hết cho 3 => 10n +8 thuộc Z

=>\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)thuộc Z

=> A là số chính phương

29 tháng 6 2016

Kiếm đâu nhiều bài căn hay vậy? :D

Ta có:

\(2< \sqrt{6}< 3.\)(1)

\(\Rightarrow8< 6+\sqrt{6}< 9\Rightarrow2< \sqrt{8}< \sqrt{6+\sqrt{6}}< \sqrt{9}\)Tức là: \(2< \sqrt{6+\sqrt{6}}< 3\)(2)

Tương tự,

\(2< \sqrt{6+\sqrt{6+\sqrt{6}}}< 3\)

...

\(2< \sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}< 3\)n dấu căn.

Vậy, phần nguyên của An = 2.