Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2003+2004}{2004+2005}=\frac{2003}{2004+2005}+\frac{2004}{2004+2005}\)
Ta có: \(\frac{2003}{2004}>\frac{2003}{2004+2005}\)
\(\frac{2004}{2005}>\frac{2004}{2004+2005}\)
\(\frac{2003}{2004}+\frac{2004}{2005}>\frac{2003+2004}{2004+2005}\)
\(A>B\)
Vậy A>B
Ta có:
\(A=\frac{2003\times2004-1}{2003\times2004}=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}=1-\frac{1}{2003\times2004}\)
\(B=\frac{2004\times2005-1}{2004\times2005}=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}=1-\frac{1}{2004\times2005}\)
Vì \(\frac{1}{2003\times2004}>\frac{1}{2004\times2005}\Rightarrow A< B\)
Ta có:
N=\(\dfrac{2003+2004}{2004+2005}\)=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)
Ta thấy:
\(\dfrac{2003}{2004+2005}\)<\(\dfrac{2003}{2004}\)(1)
\(\dfrac{2004}{2004+2005}\)<\(\dfrac{2004}{2005}\)(2)
Từ (1) và (2) --> M=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\)>\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)=N
Vậy M>N
\(\frac{2005\cdot2004-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot\left(2003+1\right)-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot2003+2005-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot2003+2004}{2003\cdot2005+2004}\)
\(=1\)
2005 x 2004 - 1 / 2003 × 2005 + 2004
= 2005 × (2003 + 1) - 1 / 2003 × 2005 + 2004
= 2005 × 2003 + (2005 - 1) / 2003 × 2005 + 2004
= 2005 × 2003 + 2004 / 2003 × 2005 + 2004
= 1
\(\frac{2005\times2004-1}{2003\times2005+2004}=\frac{2005\times2003+2005-1}{2003\times2005+2004}=\frac{2005\times2003+2004}{2003\times2005+2004}=1\)
Ta có:
n = \(\frac{2003+2004}{2004+2005}\)
\(=>\) n = \(\frac{2003}{2004+2005}+\frac{2004}{2004+2005}\)
Vì \(\frac{2003}{2004}>\frac{2003}{2004+2005}\)
\(\frac{2004}{2005}>\frac{2004}{2004+2005}\)
\(=>\frac{2003}{2004}+\frac{2004}{2005}>\frac{2003}{2004+2005}+\frac{2004}{2004+2005}\)
\(=>\)m > n
Chúc bạn học tốt :)