Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dãy tỉ số bằng nhau:
a.
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-21}{7}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-3\right)=-6\\y=5.\left(-3\right)=-15\end{matrix}\right.\)
b.
\(5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{10}{-2}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-5\right)=-15\\y=5.\left(-5\right)=-25\end{matrix}\right.\)
c.
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{-2y}{-4}=\dfrac{3x-2y}{15-4}=\dfrac{44}{11}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.4=20\\y=2.4=8\end{matrix}\right.\)
d.
\(\dfrac{x}{3}=\dfrac{y}{16}=\dfrac{3x}{9}=\dfrac{-y}{-16}=\dfrac{3x-y}{9-16}=\dfrac{35}{-7}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-5\right)=-15\\y=16.\left(-5\right)=-80\end{matrix}\right.\)
ta có: \(5x=3y\) \(\Rightarrow\frac{x}{3}=\frac{y}{5}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.5=10\)
Ta có: \(5x=3y\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}\)
Áp dụng tính chất tỉ lệ thức:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=2.3=6\\\frac{y}{5}=2\Rightarrow y=2.5=10\end{cases}\)
Vậy \(x=6\); \(y=10\)
1. 2x = 3y-2
2x+2x = 3y
4x = 3y
=> \(\frac{x}{3}=\frac{y}{y}\Rightarrow\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\frac{x}{3}=2\Rightarrow x=6\)
=> \(\frac{y}{4}=2\Rightarrow y=8\)
a) Ta có : 2x = 3y => \(\frac{x}{3}=\frac{y}{2}\)
7z = 5y => \(\frac{y}{7}=\frac{z}{5}\)
=> \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)
+) \(\frac{x}{3}=\frac{y}{2}\)=> \(\frac{x}{21}=\frac{y}{14}\)
+) \(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
=> x = 2.21 = 42 , y = 2.14 = 28 , z = 2.10 = 20
b) Ta có : x : y : z = 3 : 5 : (-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\\z=-2k\end{cases}}\)
=> 5x = 15k , y = 5k , 3z = -6k
=> 5x - y + 3z = 15k - 5k + (-6k)
=> -16 = 10k - 6k
=> -16 = 4k
=> k = -4
Với k = -4 thì x = 3.(-4) = -12 , y = 5.(-4) = -20 , z = (-2).(-4) = 8
Vậy : ....
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
\(5x=3y\)\(=\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{3}}\)\(=\frac{3x-y}{3.\frac{1}{5}-\frac{1}{3}}=\frac{16}{\frac{4}{15}}=60\)
\(\Rightarrow\frac{x}{\frac{1}{5}}=60\Rightarrow x=12\)
\(\frac{y}{\frac{1}{3}}=60\Rightarrow y=20\)
Vậy x=12; y=20