K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

Đặt \(A=5+5^2+5^3+...+5^{1002}\)

  • Chứng tỏ chia hết cho 6

 \(A=5+5^2+5^3+...+5^{1002}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{1001}+5^{1002}\right)\)

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{1001}\left(1+5\right)\)

\(A=5.6+5^3.6+...+5^{1001}.6\)

\(A=6\left(5+5^3+...+5^{1002}\right)\) chia hết cho 6(đpcm)

Các bài sau làm tương tự

17 tháng 7 2016

1) 

a) 1+5+5^2+5^3+....+5^101 

=(1+5)+(5^2+5^3)+....+(5^100+5^101)

=6+5^2.(1+5)+...+5^100(1+5)

=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6 

b) 2+2^2+2^3+...+2^2016

=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)

=2.31+2^6.31+...+2^2012.31 chia hết cho 31

Tương tự như câu a lên mk rút gọn 

2) còn bài a kì quá abc deg là sao nhỉ 

b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8 

bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại 

 

 

 

30 tháng 10 2015

a) A=5(1+5)+53(1+5)+...+5199(1+5)

  =(1+5)(5+53+....+5199) chia hết cho 6

b) A:31 dư 30 hay A-30 chia hết cho 31

Ta có A=5(1+5+52)+54(1+5+52)+57(1+5+52)+.....+598(1+5+52)

           31(5+54+57+...+599) chia hết cho 31. Nên A chia cho 31 không dư

 

21 tháng 10 2015

cug dễ thôi nhưng tự làm đê

1 tháng 1 2016

nó tự làm được thì đâu có cần hỏi

25 tháng 7 2018

Ra A= 5^11-5^3

Vì 5^11chia hết 125

     5^3 chia hết cho125

=> 5^11-5^3 chia hết cho125

25 tháng 7 2018

A=(5^11-5^3)/4