Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(\Rightarrow A=\frac{5^2}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
\(\Rightarrow A=5.\left(1-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)
Câu 1:
Giả sử \(\frac{3}{5}< \frac{3+m}{5+m}\)
=) \(3.\left(5+m\right)< 5.\left(3+m\right)\)
=) \(15+3m< 15+5m\) ( Đúng vì \(15=15\)và \(3m< 5m\)) =) Điều giả sử đúng
=) \(\frac{3}{5}< \frac{3+m}{5+m}\)
* Từ điều trên ta suy ra : Nếu \(\frac{a}{b}< 1\)=) \(\frac{a}{b}< \frac{a+m}{b+m}\)
Và nếu \(\frac{a}{b}>1\)=) \(\frac{a}{b}>\frac{a+m}{b+m}\)
Câu 2 :
= \(5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
= \(5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
= \(5.\left(\frac{1}{1}-\frac{1}{31}\right)\)= \(5.\frac{30}{31}=\frac{150}{31}\)
=> Với mọi số tự nhiên m ( như m\(\ne\)0 ) thì \(\frac{3}{5}< \frac{3+m}{5+m}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(=5\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)\)
\(=5.\frac{30}{31}\)
\(=\frac{150}{31}\)
E=\(\frac{10}{1\cdot6}\) +\(\frac{10}{6\cdot11}\) +\(\frac{10}{11\cdot16}\) +\(\frac{10}{16\cdot21}\) +\(\frac{10}{21\cdot26}\) +\(\frac{10}{26\cdot31}\) = 5*(1-\(\frac{1}{31}\) ) =5*\(\frac{30}{31}\) =\(\frac{150}{31}\)
C=5(5/1.6+5/6.11+...+5/26.31)
C=5(1-1/6+1/6-1/11+...+1/26-1/31)
C=5(1-1/31)
C=5.30/31
C=150/31
CHÚC BẠN HỌC TỐT!!!
S:5=\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{21.26}\)
S:5=\(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{26-21}{21.26}\)
S:5=\(\frac{6}{1.6}-\frac{1}{1.6}+\frac{11}{6.11}-\frac{6}{6.11}+...+\frac{26}{21.26}-\frac{21}{21.26}\)
S:5=1-\(\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{21}-\frac{1}{26}\)
S:5=1-\(\frac{1}{26}\)
S:5=\(\frac{25}{26}\)
S=\(\frac{25}{26}.5\)
S=\(\frac{125}{26}\)
Q=5(5/1x6+5/6x11+5/11x16+....+5/26x31)
Q=5(1/1-1/6+1/6-1/11+1/11-1/16+....+1/26-1/31)
Q=5(1/1-1/31)
Q=5x30/31
Q=150/31
\(Q=\frac{25}{1.6}+\frac{25}{6.11}+\frac{25}{11.16}+......+\frac{25}{26.31}.\)
\(Q=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+.....+\frac{1}{26}-\frac{1}{31}\right)\)
\(Q=5\left(1-\frac{1}{31}\right)\)
CÒN ĐÔU PN TỰ LÀM NHA
Ta có :
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{46.51}\)
\(=\)\(5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{46.51}\right)\)
\(=\)\(5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{46}-\frac{1}{51}\right)\)
\(=\)\(5\left(1-\frac{1}{51}\right)\)
\(=\)\(5.\frac{50}{51}\)
\(=\)\(\frac{250}{51}\)
Chúc bạn học tốt ~
Ta có : \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+.....+\frac{5^2}{26.31}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{1001.1006}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{1001.1006}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{1001}-\frac{1}{1006}\right)\)
\(=5\left(1-\frac{1}{1006}\right)\)
\(=5.\frac{1005}{1006}\)
\(=\frac{5025}{1006}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{1001.1006}\)
\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{1001.1006}\right)\)
\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{1001}-\frac{1}{1006}\right)\)
\(=5.\left(1-\frac{1}{1006}\right)\)
\(=\frac{5.1005}{1006}=\frac{5025}{1006}\)
Ủng hộ mk nha !!! ^_^