Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)
A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)
A = \(\dfrac{105}{106}\)
B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)
B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)
C= \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))
C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)
C = \(\dfrac{5}{51}\)
D = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)
D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)+ \(\dfrac{1}{8.9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)
D = \(\dfrac{8}{9}\)
E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)+ \(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))
E = \(\dfrac{3}{2}\)\(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)
E = \(\dfrac{147}{200}\)
a),27x36+27x4+54x30
= 27x36+27x4+27x60
= 27x(36+4+60)
= 27x100 = 2700
b)125x25x5x8x2x4
= 125x8x25x4x2x5
=1000x100x10
= 1000000
c)125x37x32:4
= 125x8x37x4:4
= 1000x37
= 37000
\(a,27\cdot36+27\cdot4+54\cdot30=27\cdot36+27\cdot4+27\cdot60\)
\(=27\cdot\left(36+4+60\right)=27\cdot100=2700\)
\(b,125\cdot25\cdot5\cdot8\cdot2\cdot4=25\cdot4\cdot25\cdot5\cdot2\cdot4\cdot2\cdot4\)
\(=25\cdot25\cdot25\cdot4\cdot4\cdot4=100\cdot100\cdot100=1000000\)
\(c,125\cdot37\cdot32:4=125\cdot37\cdot8\)
\(=1000\cdot37=37000\)
. là nhân nha
\(C=\dfrac{10}{7\cdot12}+\dfrac{10}{12\cdot17}+...+\dfrac{10}{502\cdot507}\)
\(=2\left(\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+...+\dfrac{1}{502}-\dfrac{1}{507}\right)\)
\(=2\cdot\dfrac{500}{3549}=\dfrac{1000}{3549}\)
Ta có:\(\dfrac{20}{2\times7}+\dfrac{20}{7\times12}+\dfrac{20}{12\times17}+\dfrac{20}{17\times22}+\dfrac{20}{22\times27}+\dfrac{20}{27\times32}\)
\(=4\times\left(\dfrac{5}{2\times7}+\dfrac{5}{7\times12}+\dfrac{5}{12\times17}+\dfrac{5}{17\times22}+\dfrac{5}{22\times27}+\dfrac{5}{27\times32}\right)\)
\(=4\times\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}+\dfrac{1}{22}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{32}\right)\)
\(=4\times\left(\dfrac{1}{2}-\dfrac{1}{32}\right)=4\times\dfrac{15}{32}=\dfrac{30}{16}\)
a) = 29/15
b) = 7/15
c) = 1
d) = 3
e) = 67/17
f) = 2
mk nhanh nhất tk cho mk nha
a/\(\frac{3}{5}+\frac{4}{3}=\frac{9}{15}+\frac{20}{15}=\frac{29}{15}\)
b/\(\frac{2}{3}-\frac{1}{5}=\frac{10}{15}-\frac{3}{15}=\frac{7}{15}\)
c/\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{7}{6}\)
d,\(\frac{3}{5}+\frac{4}{7}+\frac{7}{5}+\frac{3}{7}=\left(\frac{3}{5}+\frac{7}{5}\right)+\left(\frac{4}{7}+\frac{3}{7}\right)=2+1=3\)
a, \(\frac{4}{7}x\frac{5}{7}+\frac{3}{7}x\frac{5}{6}\)
= ( \(\frac{4}{7}+\frac{3}{7}\)) x \(\frac{5}{7}x\frac{5}{6}\)
= 1 x \(\frac{5}{7}x\frac{5}{6}\)
= \(\frac{5}{7}x\frac{5}{6}\)
= \(\frac{25}{42}\)
Tương tự mấy câu sau cũng làm như thế này
\(\frac{5}{12.17}+\frac{3}{34.10}+\frac{7}{60.9}+\frac{9}{27.36}\)
\(=\frac{5}{204}+\frac{3}{340}+\frac{7}{540}+\frac{9}{972}\)
\(=tự.tính.típ.nhé\)