Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(50^2-49^2+48^2-47^2+.........+2^2-1^2\)
= \(\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+........+\left(2-1\right)\left(2+1\right)\)=\(50+49+48+47+......+2+1\)
Quy luật dãy khoảng cách là 1 đơn vị
=> Số Số Hạng là : (50 - 1) : 1 + 1 = 50 (số)
=> tổng dãy là :
\(50\cdot\dfrac{\left(50+1\right)}{2}=1275\)
bạn ơi cho mk hỏi 50+49+48+47+...+2+1 tính ở đâu ak bạn
THANKS
\(B=\left(50^2+48^2+46^2+...+4^2+2^2\right)-\left(49^2+47^2+45^2+...+3^2+1^2\right)\)
\(B=50^2+48^2+46^2+...+4^2+2^2-49^2-47^2-...-3^2-1^2\)
\(B=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(4^2-3^2\right)+\left(2^2-1^2\right)\)
\(B=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
\(B=50+49+48+47+...+4+3+2+1\)
\(B=1+2+3+...+48+49+50\)
\(B=\dfrac{50-1+1}{2}.\left(1+50\right)\)
\(B=25.51\)
\(B=1275\)
A - B = (502+482+462+.....+42+22) - (492+472+452+.....+32+12)
= 502 + 482 + 462 +... + 42+ 22 - 492 - 472 - .... - 32 - 12
= (502 - 492) + (482 - 472) + ... + (42 - 32) + (22 - 12)
= (50+49) (50 - 49) + (48 - 47) (48+47)+....+(4-3)(4+3) + (2-1)(2+1)
= 50 + 49 + 48 + 47 + 46 + 45+...+4+3+2+1
= [(50 - 1) : 1 + 1] * (50+1) : 2 = 1275
vậy A - B = 1275
Câu b :
\(A=\left(50^2+48^2+46^2+.........+4^2+2^2\right)-\left(49^2+47^2+45^2+.........+5^2+3^2+1^2\right)\)
\(A=\left(50^2-49^2\right)+\left(48^2-47^2\right)+.........\left(4^2-3^2\right)+\left(2^2-1^2\right)\)
\(A=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+..........+\left(4+3\right)\left(4-3\right)+\left(2+1\right)\left(2-1\right)\)
\(A=50+49+48+..........+3+2+1\)
\(A=\dfrac{50.51}{2}\)
\(\Rightarrow A=1275\)
a, \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Sủa đề : tính \(D=\left(50^2+48^2+46^2+....+2^2\right)-\left(49^2+47^2+45^2+...+1^2\right)\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+.....+\left(2^2-1^2\right)\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+....+\left(2-1\right)\left(2+1\right)\)
\(=50+49+48+.....+2+1\)
\(=\frac{50\left(50+1\right)}{2}=1275\)
D=(502-492)+(482-472)+...+(22-12)
= ( (50-49)(50+49)+(48-47)(48+47)+...+(2-1)(2+1)
= 50+49+48+47+...+2+1
=\(\frac{\left(50+1\right).50}{2}\)
=1275