\(x^2\)

x là j vậy mn

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

\(x^2=5\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

13 tháng 3 2020

\(a.\frac{x-6}{x-4}=\frac{x}{x-2}\\\Leftrightarrow \frac{\left(x-6\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}=\frac{x\left(x-4\right)}{\left(x-4\right)\left(x-2\right)}\\\Leftrightarrow \left(x-6\right)\left(x-2\right)=x\left(x-4\right)\\\Leftrightarrow \left(x-6\right)\left(x-2\right)-x\left(x-4\right)=0\\ \Leftrightarrow x^2-2x-6x+12-x^2+4x=0\\\Leftrightarrow -4x+12=0\\\Leftrightarrow -4x=-12\\ \Leftrightarrow x=3\)

\(b.1+\frac{2x-5}{x-2}-\frac{3x-5}{x-1}=0\\ \Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}+\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(3x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)+\left(2x-5\right)\left(x-1\right)-\left(3x-5\right)\left(x-2\right)=0\\ \Leftrightarrow x^2-x-2x+3+2x^2-2x-5x+5-3x^2+6x+5x-10=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \)

13 tháng 3 2020

bạn có thể làm câu D,E được không ạ

3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\) \(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\) \(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\) Mc: \(x.\left(x-5\right)\) \(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5 \(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0 \(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0 \(\Leftrightarrow\) \(x\) . (\(x\) - 3) =...
Đọc tiếp

3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\)

Mc: \(x.\left(x-5\right)\)

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0

\(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0

\(\Leftrightarrow\) \(x\) . (\(x\) - 3) = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) - 3 = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) = 3

Vậy \(x\) = 0 hoặc \(x\) = 3

\(x-5\ne0\Rightarrow x\ne5\)

\(x^2-5\ne0\Rightarrow x\ne5\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {3}

4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)

\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x.\left(x+7\right)}\)

\(\Leftrightarrow\frac{x.\left(x-4\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)

Mc: \(x.\left(x+7\right)\)

\(\Leftrightarrow x^2-4x-x-7=-7\)

\(\Leftrightarrow x^2-4x-x=-7+7\)

\(\Leftrightarrow\) \(x^2-5x=0\)

\(\Leftrightarrow x.\left(x-5\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(x-5=0\)

\(\Leftrightarrow x=0\) hoặc \(x=5\)

Vậy \(x=0\) hoặc \(x=5\)

\(x+7\ne0\Rightarrow x\ne-7\)

\(x^2+7\ne0\Rightarrow x\ne-7\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-7\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {5}

5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)

\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow TXĐ\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

Mc : \(\left(x-2\right).\left(x+2\right)\)

\(\Leftrightarrow\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)

\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)

\(\Leftrightarrow x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)

\(\Leftrightarrow2x^2-8x+8=0\)

\(\Leftrightarrow\) \(2x^2-4x-4x+8=0\)

\(\Leftrightarrow\) \(2x.\left(x-2\right)-4.\left(x-2\right)=0\)

\(\Leftrightarrow\left(2x-4\right).\left(x-2\right)=0\)

\(\Leftrightarrow2x-4=0\) hoặc \(x-2=0\)

\(\Leftrightarrow x=2\) hoặc \(x=2\)

\(\Leftrightarrow x=2\) (Loại) hoặc x = 2 (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)

MC: \(\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow x^2+x+x+1-x^2+x+x-1=4\)

\(\Leftrightarrow x^2-x^2+x+x+x+x+1-1-4=0\)

\(\Leftrightarrow4x-4=0\)

\(\Leftrightarrow4.\left(x-1\right)=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x-1=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x=1\)

\(\Leftrightarrow\) 4 = 0 (Loại) hoặc \(x=1\) (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}\)

\(Mc:\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow\) \(x^2+x+x+1-4x=x^2-x-x+1\)

\(\Leftrightarrow x^2-x^2+x+x-4x+x+x=-1+1\)

\(\Leftrightarrow0=0\) (Nhận)

Vậy S = \(\left\{x\in R;x\ne\pm1\right\}\)

0
4 tháng 7 2019

nếu sai ở đâu sửa giúp mình vớihahahahahaha

4 tháng 7 2019

nhanh mình đang cần gấp

21 tháng 4 2020

\(\frac{x+5}{x^2-5x}-\frac{x+25}{2x^2-50}=\frac{x-5}{2x^2+10x}\) (α)

ĐKXĐ : \(x\ne0;x\ne\pm5\)

Với đk trên, ta có :

(α) ⇔ \(\frac{2\left(x+5\right)^2}{2x\left(x^2-25\right)}-\frac{x^2+25x}{2x\left(x^2-25\right)}=\frac{\left(x-5\right)^2}{2x\left(x^2-25\right)}\)

\(2\left(x^2+10x+25\right)-x^2-25x=x^2-10x+25\)

\(2x^2+20x+50-x^2-25x=x^2-10x+25\)

\(2x^2-x^2-x^2+20x-25x+10x=25-50\)

\(5x=-25\)

\(x=-5\) (loại)

Vậy : \(S=\varnothing\)

21 tháng 4 2020
https://i.imgur.com/TqKLfP9.jpg
28 tháng 10 2018

\(I=3\left(x^2-\dfrac{5}{3}x+1\right)\)

\(I=3\left(x^2-2.x.\dfrac{5}{6}+\left(\dfrac{5}{6}\right)^2-\left(\dfrac{5}{6}\right)^2+1\right)\)

\(I=3\left[\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{36}\right]\)

\(I=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}\)

28 tháng 10 2018

mình ra là \(\dfrac{11}{36}\)mà bn

bn coi lại đi

I=3x2-5x+3

I=3(x2-\(\dfrac{5}{3}\)x+1)

I=3[x2-2.x.\(\dfrac{5}{3}\)+\(\left(\dfrac{5}{6}\right)^2\)-\(\left(\dfrac{5}{6}\right)^2\)+1]

I=3(x-\(\dfrac{5}{3}\))2+\(\dfrac{11}{36}\)

I=3(x-\(\dfrac{5}{3}\))2+\(\dfrac{11}{36}\)\(\dfrac{11}{36}\)

vậy Min I= \(\dfrac{11}{36}\)khi x =\(\dfrac{5}{3}\)

Theo mik nghĩ là vậy á

CHÚC BN HỌC TỐT

Bài 1:

a) Ta có: \(\left(x^2-2x+1\right):\left(x-1\right)\)

\(=\left(x-1\right)^2:\left(x-1\right)\)

=x-1

b) Ta có: \(\left(x^3+1\right):\left(x^2-x+1\right)\)

\(=\frac{\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}=x+1\)

c) Ta có: \(\left(x^3-x^2-5x-3\right):\left(x-3\right)\)

\(=\frac{x^3-3x^2+2x^2-6x+x-3}{x-3}\)

\(=\frac{x^2\left(x-3\right)+2x\left(x-3\right)+\left(x-3\right)}{\left(x-3\right)}\)

\(=\frac{\left(x-3\right)\left(x^2+2x+1\right)}{\left(x-3\right)}\)

\(=\left(x+1\right)^2\)

d) Ta có: \(\left(x^4+x^3-6x^2-5x+5\right):\left(x^2+x-1\right)\)

\(=\frac{x^4+x^3-x^2-5x^2-5x+5}{x^2+x-1}\)

\(=\frac{x^2\left(x^2+x-1\right)-5\left(x^2+x-1\right)}{x^2+x-1}\)

\(=\frac{\left(x^2+x-1\right)\left(x^2-5\right)}{x^2+x-1}\)

\(=x^2-5\)

10 tháng 3 2020

1. \(1+\frac{2x-5}{x-2}-\frac{3x-5}{x-1}=0\)

\(\Rightarrow\frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}+\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(3x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}=0\)

\(\Rightarrow x^2-x-2x+2+2x^2-2x-5x+5-3x^2+6x+5x-10=0\)

\(\Rightarrow x-3=0\Rightarrow x=3\)

2. \(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)

\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}-\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}-\frac{16}{5}=0\)

\(\Rightarrow x^2-4x-3x+12-x^2+4x-4-16=0\)

\(\Rightarrow-3x-8=0\Rightarrow x=\frac{-8}{3}\)

3. \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)

\(\Rightarrow\frac{\left(x-2\right)^2}{x^2-4}-\frac{3\left(x+2\right)}{x^2-4}-\frac{2\left(x-11\right)}{x^2-4}=0\)

\(\Rightarrow x^2-4x+4-3x-6-2x+22=0\)

\(\Rightarrow x^2-9x+20=0\)

\(\Rightarrow x^2-4x-5x+20=0\)

\(\Rightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

10 tháng 3 2020

cảm ơn pn nhìu

27 tháng 2 2020

\(a.\frac{7x-3}{x-1}=\frac{3}{2}\)

\(\Leftrightarrow\frac{7x-3}{x-1}-\frac{3}{2}=0\)

\(\Leftrightarrow\frac{2\left(7x-3\right)}{2.\left(x-1\right)}-\frac{3\left(x-1\right)}{2\left(x-1\right)}=0\)

\(\Leftrightarrow\frac{14x-6-3x+3}{2\left(x-1\right)}=0\)

\(\Leftrightarrow11x-3=0\)

\(\Leftrightarrow x=\frac{3}{11}\)

\(b.\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\)

\(\Leftrightarrow\frac{6-14x}{1+x}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{2\left(6-14x\right)}{2\left(1+x\right)}-\frac{1+x}{2\left(1+x\right)}=0\)

\(\Leftrightarrow\frac{12-28x-1-x}{2\left(1+x\right)}=0\)

\(\Leftrightarrow11-29x=0\)

\(\Leftrightarrow x=\frac{11}{29}\)

\(c.\frac{1}{x-2}+3=\frac{3-x}{x-2}\)

\(\Leftrightarrow\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}-\frac{3-x}{x-2}=0\)

\(\Leftrightarrow\frac{1+3x-6-3+x}{x-2}=0\)

\(\Leftrightarrow4x-8=0\)

\(\Leftrightarrow x=2\)

\(d.\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)

\(\Leftrightarrow\frac{\left(x+5\right)^2}{x^2-25}-\frac{\left(x-5\right)^2}{x^2-25}-\frac{20}{x^2-25}=0\)

\(\Leftrightarrow\frac{x^2+10x+25-x^2+10x-25-20}{x^2-25}=0\)

\(\Leftrightarrow20x-20=0\)

\(\Leftrightarrow x=10\)

27 tháng 2 2020

cảm ơn bạn nha

31 tháng 12 2022

a: \(\Leftrightarrow4\left(6-x\right)-3x=6\left(2x+3\right)-12\)

=>24-4x-3x=12x+18-12

=>12x+6=-7x+24

=>19x=18

=>x=18/19

b: \(\Leftrightarrow-210x-6\left(x-3\right)-15x=30x+10\left(2x+1\right)\)

=>-225x-6x+18=30x+20x+10

=>-231x+18-50x-10=0

=>-281x=-8

=>x=8/281

c: \(\Leftrightarrow36-2\left(x+3\right)=-4x+1-x\)

=>36-2x-6=-5x+1

=>3x=1+6-36=5-36=-31

=>x=-31/3

d: \(\Leftrightarrow-30\left(x-3\right)+10\left(2x-7\right)=6\left(6-x\right)\)

=>-30x+90+20x-70=36-6x

=>-10x+20=36-6x

=>-4x=16

=>x=-4