Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không nhé
(2x+1)(4x^2-xy+1)-(8x^3-1)
= ((2x)^3 -1) - ( 8x^3 - 1 ) = 0
Vậy là không phụ thuộc vào biến nhé bạn
pt <=> x^4+8x-4x^3-5 = 0
<=> (x^4-x^3)-(3x^3-3x)+(5x-5) = 0
<=> x^3.(x-1)-3.x.(x-1).(x+1)+5.(x-1) = 0
<=> (x-1).(x^3-3x^2-3x+5) = 0
<=> (x-1).[(x^3-x^2)-(2x^2-2x)-(5x-5)] = 0
<=> (x-1)^2.(x^2-2x-5) = 0
<=> x-1=0 hoặc x^2-2x-5=0
<=> x=1 hoặc x = \(1+-\sqrt{6}\)
Vậy ...............
Tk mk nha
\(\Leftrightarrow\frac{8x^2}{3\left(1-2x\right)\left(1+2x\right)}=\frac{2x}{3\left(2x-1\right)}-\frac{1+8x}{4\left(1+2x\right)}\left(1\right)\)
Điều kiện : \(x\ne\frac{1}{2};\frac{-1}{2}\)
\(\left(1\right)\Leftrightarrow\frac{8x^2.4}{12\left(1-2x\right)\left(1+2x\right)}=\frac{-2x\left(1+2x\right).4}{12\left(1-2x\right)\left(1+2x\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1+2x\right)\left(1-2x\right)}\)
=> 32x2 = -8x(1+2x) - 3(1+8x)(1-2x)
<=> 32x2 = -8x - 16x2 + (-3-24x)(1-2x)
<=> 32x2 = -16x2 -8x -3 + 6x - 24x + 48x2
<=> -26x = 3
<=> x= -3/26 (nhận)
Vậy tập nghiệm \(S=\left\{\frac{-3}{26}\right\}\)
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
ĐK: x khác 1; - 1
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}.\)
<=> \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}+\frac{12x-1}{4x-4}.\)
<=> \(\frac{6.4}{4\left(x^2-1\right)}+\frac{5\left(x^2-1\right)}{4\left(x^2-1\right)}=\frac{\left(8x-1\right)\left(x-1\right)}{4\left(x^2-1\right)}+\frac{\left(12x-1\right)\left(x+1\right)}{4\left(x^2-1\right)}.\)
<=> \(24+20x^2-20=8x^2-x-8x+1+12x^2-x+12x-1\)
<=> \(2x=4\)
<=> x = 2 thỏa mãn.
\(ĐKXĐ:x\ne\pm1\)
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4\left(x+1\right)}-\frac{12x-1}{4\left(x-1\right)}=0\)
\(\Leftrightarrow\frac{24+20\left(x^2-1\right)-\left(8x-1\right)\left(x-1\right)-\left(12x-1\right)\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow24+20x^2-20-8x^2+9x-1-12x^2-11x+1=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
ĐKXĐ: \(x\ne\pm1\)
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x+1\right)\left(x-1\right)}+5=\frac{8x-1}{4\left(x+1\right)}-\frac{12x-1}{4\left(1-x\right)}\)
\(\Leftrightarrow24\left(1-x\right)+20\left(x+1\right)\left(x-1\right)\left(1-x\right)=\left(8x-1\right)\left(x-1\right)\left(1-x\right)\)\(-\left(12x-1\right)\left(x+1\right)\left(1-x\right)\)
\(\Leftrightarrow4-4x+20x^2-20x^3=18x^2-20x^3+2x\)
\(\Leftrightarrow4-4x+20x^2=18x^2+2x\)
\(\Leftrightarrow4-4x+20x^2-18x^2-2x=0\)
Trả lời:
\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)\(\left(đkxđ:x\ne0;x\ne2\right)\)
\(\Leftrightarrow\frac{x-1}{2x\left(x-2\right)}-\frac{7}{8x}=\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{2\left(5-x\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}\)
\(\Rightarrow4\left(x-1\right)-7\left(x-2\right)=2\left(5-x\right)-x\)
\(\Leftrightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow10-3x=10-3x\)
\(\Leftrightarrow-3x+3x=10-10\)
\(\Leftrightarrow0x=0\)( luôn thỏa mãn )
Vậy S = R với \(x\ne0;x\ne2\)
Nhầm đề, ghi lại: Giải phương trình ( 8x - 4x^2 - 1)( x^2 + 2x+ 1) = 4( x^2 +x +1)
Đặt a=4x-19; b=4x-20
=>a^4+b^4=(a+b)^4
=>4a^3b+6a^2b^2+4ab^2=0
=>ab(4a^2+6ab+4b)=0
=>(4x-19)(4x-20)=0
=>x=19/4 hoặc x=20/4=5
Đề yêu cầu phân tích đa thức thành nhân tử à em?
dạ