K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

\(\frac{4x+1}{x^2+3}=\frac{x^2+4x+4-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)

Dấu "=' xảy ra khi x = -2

2 tháng 7 2017

Ta có : C = 4x2 + 25y2 - 4x + 30y 

=> C = 4x2 - 4x + 25y2 + 30y

=> C = (4x2 - 4x + 1) + (25y2 + 30y + 9) - 10

=> C = (2x - 1)2 + (5y + 3)2 - 10 

Mà \(\left(2x-1\right)^2;\left(5y+3\right)^2\ge0\forall x\)

Nên C =  (2x - 1)2 + (5y + 3)2 - 10 \(\ge-10\forall x\)

Vậy giá trị nhỏ nhất của C là -10 tại x = \(\frac{1}{2}\) và y = \(-\frac{3}{5}\)

2 tháng 7 2017

Ta có:

4x^2+25y^2-4x+30y

=(4x^2-4x+1)+(25y^2+30y+9)-10

=(2x-1)^2+(5y+3)^2-10

Vì (2x-1)^2>=0 với mọi x; (5y+3)^2>=0 với mọi y

=>(2x-1)^2+(5y+3)^2>=0 với mọi x,y

=>(2x-1)^2+(5y+3)^2-10>=-10 với mọi x,y

Dấu "=" xảy ra <=>2x-1=0 và 5y+3=0

<=>x=1/2 và y=-3/5

30 tháng 7 2017

giúp vs

30 tháng 7 2017

mấy bài nầy dễ thôi. chỉ cần áp dụng các hằng đẳng thức là đc!

Có link câu này bạn tham khảo xem có được không nhé

https://h.vn/hoi-dap/question/535151.html

Học tốt nhé!

18 tháng 6 2018

Giải:

a) \(D=-4x^2-3x+2\)

\(\Leftrightarrow D=-4x^2-3x-\dfrac{9}{16}+\dfrac{41}{16}\)

\(\Leftrightarrow D=\dfrac{41}{16}-\left(4x^2+3x+\dfrac{9}{16}\right)\)

\(\Leftrightarrow D=\dfrac{41}{16}-\left(2x+\dfrac{3}{4}\right)^2\le\dfrac{41}{16}\)

\(\Leftrightarrow D_{Max}=\dfrac{41}{16}\)

b) \(A=x^2+x+1\)

\(\Leftrightarrow A=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Leftrightarrow A_{Min}=\dfrac{3}{4}\)

c) \(B=4x^2-3x+2\)

\(\Leftrightarrow B=4x^2-3x+\dfrac{9}{16}+\dfrac{41}{16}\)

\(\Leftrightarrow B=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{41}{16}\ge\dfrac{41}{16}\)

\(\Leftrightarrow B_{Min}=\dfrac{41}{16}\)

Vậy ...

18 tháng 6 2018

sao ra 9/16