K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

a. \(x^3-2x^2+x\)

\(=x^3-x^2-x^2+x\)

\(=x^2\left(x-1\right)-x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-x\right)\)

\(=\left(x-1\right)x\left(x-1\right)\)

\(=x\left(x-1\right)^2\)

b. \(x^2-2x-15\)

\(=\left(x^2-2x+1\right)-16\)

\(=\left(x-1\right)^2-4^2\)

\(=\left(x-1-4\right)\left(x-1+4\right)\)

\(=\left(x-5\right)\left(x-3\right)\)

c. \(5x^2y^3-25x^3y^4+10x^3y^3\)

\(=5x^2y^3\left(1-5xy+2x\right)\)

d. \(12x^2y-18xy^2-30y^2\)

\(=6y\left(2x^2-3xy-5y\right)\)

e. \(5\left(x-y\right)-y\left(x-y\right)\)

\(=\left(x-y\right)\left(5-y\right)\)

10 tháng 3 2020

cảm ơn nha

16 tháng 10 2018

\(1,4x^4+4x^2y^2-8y^4\)

\(=4\left(x^4+x^2y^2-y^4-y^4\right)\)

\(=4\left[\left(x^4-y^4\right)+\left(x^2y^2-y^4\right)\right]\)

\(=4\left[\left(x^2+y^2\right)\left(x^2-y^2\right)+y^2\left(x^2-y^2\right)\right]\)

\(=4\left(x^2-y^2\right)\left(x^2+y^2+y^2\right)\)

\(=4\left(x-y\right)\left(x+y\right)\left(x^2+2y^2\right)\)

16 tháng 10 2018

\(2,12x^2y-18xy^2-30y^3\)

\(=6y\left(2x^2-3xy-5y^2\right)\)

\(=6y\left[\left(2x^2+2xy\right)-\left(5xy+5y^2\right)\right]\)

\(=6y\left[2x\left(x+y\right)-5y\left(x+y\right)\right]\)

\(=6y\left(x+y\right)\left(2x-5y\right)\)

17 tháng 8 2018

\(3x^3y^2-6x^2y^3+9x^2y^2=3x^2y^2\left(x-2y+3\right)\)

\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)

\(12x^2y-18xy^2-3xy^2=3xy\left(4x-6y-y\right)\)

\(5\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(5-y\right)\)

\(y\left(x-z\right)+7\left(z-x\right)=y\left(x-z\right)-7\left(x-z\right)=\left(x-z\right)\left(y-7\right)\)
\(27x^2\left(y-1\right)-9x^3\left(1-y\right)=27x^2\left(y-1\right)+9x^3\left(y-1\right)=9x^2\left(y-1\right)\left(3-x\right)\)

17 tháng 8 2018

Cảm ơn bn Kudo nhìu nha!!!

28 tháng 7 2015

??                       

11 tháng 8 2019

\(\text{a) }x^3y^3+x^2y^2+4\)

\(=x^3y^3+2x^2y^2-x^2y^2+4\)

\(=\left(x^3y^3+2x^2y^2\right)-\left(x^2y^2-4\right)\)

\(=x^2y^2\left(xy+2\right)-\left(xy+2\right)\left(xy-2\right)\)

\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)

11 tháng 8 2019

\( {c)}\)\(x^4+x^3+6x^2+5x+5\)

\(=\left(x^4+x^3+x^2\right)+\left(5x^2+5x+5\right)\)

\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2+5\right)\)

\({d)}\)\(x^4-2x^3-12x^2+12x+36\)

\(=\left(x^4-2x^3-6x^2\right)-\left(6x^2-12x-36\right)\)

\(=x^2\left(x^2-2x-6\right)-6\left(x^2-2x-6\right)\)

\(=\left(x^2-2x-6\right)\left(x^2-6\right)\)

Câu b sai đề thì phải ah

4 tháng 7 2017

a)\(9x^2y^3-3x^4y^2-6x^3y^2+18xy^4=3xy^2\left(3xy-x^3-2x^2+6y^2\right)\)

b)\(a^3x^2y^2-\frac{5}{2}a^3x^4+\frac{3}{2}a^4x^2y=a^3x^2\left(y^2-\frac{5}{2}x^2+\frac{3}{2}ay\right)\)

c)\(x^2+4xy-21y^2=\left(x^2+4xy+4y^2\right)-25y^2=\left(x+2y\right)^2-\left(5y\right)^2=\left(x+2y-5y\right)\left(x+2y+5y\right)=\left(x-3y\right)\left(x+7y\right)\)d)\(2x^4+4=2\left(x^4+4\right)=2\left(x^4+4x^2+4-4x^2\right)=2\left[\left(x^2+2\right)^2-\left(2x\right)^2\right]=2\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

31 tháng 10 2020

a) \(6x^3-12x^2y^2+6xy^3=6x.\left(x^2-2xy^2+y^3\right)\)

b) \(\left(x^2+4\right)^2-16=\left(x^2+4-4\right)\left(x^2+4+4\right)=x^2\left(x^2+8\right)\)

c) \(5x^2-5xy-10x+10y=\left(5x^2-5xy\right)-\left(10x-10y\right)=5x\left(x-y\right)-10\left(x-y\right)\)

\(=\left(x-y\right)\left(5x-10\right)=5\left(x-y\right)\left(x-2\right)\)

d) \(a^3-3a+3b-b^3=\left(a^3-b^3\right)-\left(3a-3b\right)=\left(a-b\right)\left(a^2+ab+b^2\right)-3.\left(a-b\right)\)

\(=\left(a-b\right)\left(x^2+ab+b^2-3\right)\)

e) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-1-y\right)\left(x-1+y\right)\)

f) \(x^2-x-2=x^2+x-2x-2=\left(x^2+x\right)-\left(2x+2\right)=x\left(x+1\right)-2\left(x+1\right)\)

\(=\left(x+1\right)\left(x-2\right)\)

g) \(x^4-5x^2+4=x^4-4x^2+4-x^2=\left(x^4-4x^2+4\right)-x^2=\left(x^2-2\right)^2-x^2\)

\(=\left(x^2-2-x\right)\left(x^2-2+x\right)\)

j) \(x^3-x^3-2x^2-x=-2x^2-x=-\left(2x^2+x\right)=-x\left(2x+1\right)\)

k) \(\left(a^3-27\right)-\left(3-a\right)\left(6a+9\right)=\left(a-3\right).\left(a^2+3a+9\right)+\left(a-3\right)\left(6a+9\right)\)

\(\left(a-3\right)\left(a^2+3a+9+6a+9\right)=\left(a-3\right)\left(a^2+9a+18\right)\)

h) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z+y^2z-y^2x+z^2x-z^2y\)

\(=\left(x^2y-y^2x\right)-\left(x^2z-y^2z\right)+\left(z^2x-z^2y\right)\)

\(=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)

\(=\left(x-y\right)\left[\left(xy-zx\right)-\left(zy-z^2\right)\right]\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

11 tháng 10 2020

a) \(4x^3y-12x^2y^3-8x^4y^3\)

\(=4x^2y\left(x-3y^2-2x^2y^2\right)\)

b) \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x-y+1\right)\left(x+y+1\right)\)

c) \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-y-1\right)\left(x+y-1\right)\)

d) \(x\left(x-2y\right)+3\left(2y-x\right)\)

\(=x\left(x-2y\right)-3\left(x-2y\right)\)

\(=\left(x-3\right)\left(x-2y\right)\)

e) \(x^2+4\)

\(=\left(x^4+4x^2+4\right)-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

f) \(5x^2-7x-6\)

\(=\left(5x^2-10x\right)+\left(3x-6\right)\)

\(=5x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(5x+3\right)\left(x-2\right)\)

25 tháng 10 2020

a) \(2x-6y=2\left(x-3y\right)\)

b) \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)

c) \(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)

d) \(x^2-2xy+y^2-9\)

\(=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)

e) \(x^3-10x^2+25x=x\left(x^2-10x+25\right)=x\left(x-5\right)^2\)

f) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)