Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>n^2+4n-2n-8+14 chia hết cho n+4
=>\(n+4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
hay \(n\in\left\{-3;-5;-2;-6;3;-11;10;-18\right\}\)
c: Sửa đề: \(n^4-2n^3+2n^2-2n+1⋮n-1\)
=>\(n^4-n^3-n^3+n^2+n^2-n-n+1⋮n-1\)
\(\Leftrightarrow\left(n-1\right)\left(n^3-n^2+n-1\right)⋮n-1\)(luôn đúng)
Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath
Em tham khaoe link trên.
b: 9^2n có chữ số tận cùng là 1
=>9^2n+14 có chữ số tận cùng là 5
=>9^2n+14 chia hết cho 5
c: n(n^2+1)(n^2+4)
=n(n-2)(n-1)(n+1)(n+2)+10n^3
Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp
nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5
=>n(n^2+1)(n^2+4) chia hết cho 5
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
Ta có : (4n + 3)2 - 25
= 16n2 + 24n + 9 - 25
= 16n2 + 24n - 16
= 8(2n2 + 3n - 2)
Mà n là số nguyên nên : (2n2 + 3n - 2) nguyên
=> 8(2n2 + 3n - 2) chia hết cho 8
Vậy (4n + 3)2 - 25 chia hết cho 8
a) \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=x^4+2x^3+x^2+4x^2+4x-12\)
\(=x^4-x^3+2x^3-2x^2+x^3-x^2+2x^2-2x+6x^2-6x+12x-12\)
\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+x^2\left(x-1\right)+2x\left(x-1\right)+6x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x^3+ 2x^2+x^2+2x+6x+12\right)\left(x-1\right)\)
\(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)-24\)
\(=x^4+x^3+2x^3+2x^2+3x^3+3x^2+6x^2+6x+4x^3+4x^2+8x^2+8x+12x^2+12x+24x+24\)
\(=x^4+5x^3+5x^3+5x^2+10x^2+50x\)
\(=x^2\left(x^2+5x\right)+5x\left(x^2+5x\right)+10\left(x^2+5x\right)\)
\(=\left(x^2+5x+10\right)\left(x^2+5x\right)\).
Bài 1:
a, \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x\right)^2+2.2\left(x^2+x\right)+4-16\)
=\(\left(x^2+x+2\right)^2-4^2\)
=\(\left(x^2+x-2\right)\left(x^2+x+6\right)\)
b,\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
=\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) (1)
Đặt \(x^2+5x+5=a\) thay vào (1) đc:
(1) = \(\left(a-1\right)\left(a+1\right)-24=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
Bài 2:
\(a,n^2+4n+3=n^2+n+3n+3\)
\(=n(n+1)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)Đặt \(n=2k+1\)
\(\Rightarrow\left(n+1\right)\left(n+3\right)=\left(2k+2\right)\left(2k+4\right)\)
Mà tích của 2 số nguyên chẵn liên tiếp thì chia hết chia hết cho 8
\(\Rightarrowđpcm\)
b,\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)\(=\left(n+3\right)\left(n^2-1\right)\)\(=\left(n+3\right)\left(n+1\right)\left(n-1\right)\)
Mà 48 = 24.3
Đặt \(n=2k+1\) thì
(1) = \(\left(2k+4\right)\left(2k+2\right)2k\)
Tích của 3 số nguyên chẵn liên tiếp thì chia hết cho 16 (I)
Tích của số chẵn liên tiếp thì có một số là bội của 3 (II)
(I);(II)\(\Rightarrow\)đpcm
c,512 = 29
\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)\(=(n^4-1)\left(n^8-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n^4+1\right)\)Đặt \(n=2k+1\) thay vào đc:
\(2k\left(2k+2\right)\left(4k^2+4k+2\right)2k\left(2k+2\right)\).
\(\left(4k^2+4k+2\right)\left(16k^4+32k^3+24k^2+8k+2\right)\)Bạn tự chứng minh tiếp nhá!!