Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) xy-5x-55y=0
\(\Leftrightarrow\) x(y-5)-55y+225=0+225=225
\(\Leftrightarrow\)x(y-5)-(55y-275)=225
\(\Leftrightarrow\) x(y-5)-55(y-5)=225
\(\Leftrightarrow\)(x-55).(y-5)=225
Số 225 có quá nhiều ước, là tích của quá nhiều cặp số nguyên nên bạn chịu khó liệt kê ra nha ( hoặc là xem lại đề bài vì chẳng có giáo viên nào hành h/s thế đâu.)
b,(x + 3).(x2 + 1)= 0
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2+1=0\end{cases}\Rightarrow}x=-3\)
c,(x + 5).(x2 - 4)=0
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=-5\\x=\pm2\end{cases}}}\)
a, => x + 1 = 0 => x = -1
y - 1 = 0 => y = 1
z - 2 = 0 => z = 2
=> x,y,z thuộc { -1; 1; 2 }
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
a,2x+5 = 0 hoặc 5-x=0 ( còn lại tự tính)
b,,x2-4=0 hoặc x2-36=0 ( còn lại tự tính)
tương tự như vậy làm câu c
d, bài này dài ( không làm )
e, ......( dài)
f, x={4;5;6}
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
b: \(3\left(x-1\right)^2+2\left(y-3\right)^2+\left(z+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-2\end{matrix}\right.\)
c: \(x^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)