Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^4-4x^3-2x^2-x^3+4x^2+2x-2x^2+8x+4\)
\(=x^2\left(x^2-4x-2\right)-x\left(x^2-4x-2\right)-2\left(x^2-4x-2\right)\)
\(=\left(x^2-x-2\right)\left(x^2-4x-2\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(x^2-4x-2\right)\)
b/ĐK: \(x^2\ne2\)
\(\frac{x^4+4}{x^2-2}=5x\Leftrightarrow x^4+4=5x\left(x^2-2\right)\)
\(\Leftrightarrow x^4-5x^3+10x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-4x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=2+\sqrt{6}\\x=2-\sqrt{6}\end{matrix}\right.\)
p2p2 là số chính phương nên p2p2 chia 7 dư 0,1,2 hoặc 4
- Nếu p2⋮7p2⋮7 thì p⋮7⇒p=7p⋮7⇒p=7 , thay vào thỏa mãn
-Nếu p2p2 chia 7 dư 1 thì 3p2+43p2+4 ⋮7⇒⋮7⇒ trái với đề bài
- Nếu p2p2 chia 7 dư 2 3p2+1⋮7⇒3p2+1⋮7⇒ vô lí
-Nếu p2p2 chia 7 dư 4 2p2−1⋮7⇒2p2−1⋮7⇒ vô lí
Vậy p=7
BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5
Ta có P8n+3P4n-4 = p4n(p4n+3) -4
Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1
( cách chứng minh là đồng dư hay tìm chữ số tận cùng )
suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5
Bài 5
Ta xét :
Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)
Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)
suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)
Từ (1) và (2) suy ra 4p+1 là hợp số
ba ước