K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

-4x2-4x-2=-4(x2+x+1/2)

=-4(x2+2.1/2x+1/4+1/4)

=-4[(x+1/2)2+1/4]

vì (x+1/2)2 +1/4  lớn hơn hoặc = 0 với mọi x nên -4[(x+1/2)2+1/4] bé hơn hoặc = 0 với mọi x hay -4x2-4x-2 luôn âm với mọi x

28 tháng 6 2016

 Đề bài sai! bạn thay x= 2 vào xem âm ko.

28 tháng 6 2016

tớ làm sao ko ra đc

28 tháng 6 2016

Ta có: \(4x^2-28x+51=\left(2x\right)^2-2\cdot2x\cdot7+49+2\)

                                       \(=\left(2x-7\right)^2+2\)(*)

Vì \(\left(2x-7\right)^2\ge0\) với mọi x

=> (*)\(\ge1\)

 =>(*) luôn luôn dương với mọi x

 

28 tháng 6 2016

ta có : \(4x^2-28x+51=\left(2x\right)^2-2.2x.7+7^2+51=\left(2x-7\right)^2+51\)

vì \(\left(2x-7\right)^2\ge0\) với mọi x 

\(\Rightarrow\left(2x-7\right)^1+51>0\) với mọi x  (đpcm)

31 tháng 8 2020

Làm mỗi ý đầu !! Mấy ý kia tự làm nha !

1) Biến đổi vế trái , ta có :

\(x^2+xy+y^2+1\)

\(\Leftrightarrow x^2+xy+\frac{1}{4}y^2+\frac{3}{4}y^2+1\)

\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\left(đpcm\right)\)

31 tháng 8 2020

x2 + xy + y2 + 1

 \(=\left[x^2+2\cdot x\cdot\frac{y}{2}+\left(\frac{y}{2}\right)^2\right]+\frac{3y^2}{4}+1\)

\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\forall x,y\left(đpcm\right)\)

\(4x-x^2\)

\(=-\left(x^2-4x+4\right)+4\)

\(=-\left(x-2\right)^2+4\le4\forall x\)

\(-x^2+4x-10\)

\(=-\left(x^2-4x+4\right)-6\)

\(=-\left(x-2\right)^2-6\le-6< 0\forall x\left(đpcm\right)\)

1 tháng 11 2018

\(A=4x^2+10y^2-4xy-32y+4x+27\)       

\(=\left(4x^2-4xy+y^2\right)+4x-2y+1+9y^2-30y+25+1\)

\(=\left(2x-y\right)^2+2\left(2x-y\right)+1+\left(3y\right)^2-2.3y.5+5^2+1\)

\(=\left(2x-y+1\right)^2+\left(3y-5\right)^2+1>0\forall x;y\)

18 tháng 9 2019

Pham Van Hung

A=4x^2+10y^2-4xy-32y+4x+27A=4x2+10y2−4xy−32y+4x+27       

=\left(4x^2-4xy+y^2\right)+4x-2y+1+9y^2-30y+25+1=(4x2−4xy+y2)+4x−2y+1+9y2−30y+25+1

=\left(2x-y\right)^2+2\left(2x-y\right)+1+\left(3y\right)^2-2.3y.5+5^2+1=(2x−y)2+2(2x−y)+1+(3y)2−2.3y.5+52+1

=\left(2x-y+1\right)^2+\left(3y-5\right)^2+1&gt;0\forall x;y=(2x−y+1)2+(3y−5)2+1>0∀x;y

28 tháng 10 2020

Ta có A = -x2 + 4x - 6 - y2 - 2y 

= -(x2 - 4x + 4) - (y2 + 2y + 1) - 1

= -(x - 2)2 - (y + 1)2 - 1 \(\le-1< 0\)

=> A < 0 với mọi x ; y

28 tháng 10 2020

A = -x2 + 4x - 6 - y2 - 2y 

= -( x2 - 4x + 4 ) - ( y2 + 2y + 1 ) - 1

= -( x - 2 )2 - ( y - 1 )2 - 1 ≤ -1 < 0 ∀ x, y

=> đpcm

12 tháng 10 2017

P = \(-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\le0\)với mọi x \(\Rightarrow\)GTN của P là -1 đạt được khi x = 2

Q = \(-4x^2+12x-12=-\left(4x^2-12x+12\right)\)

\(=-\left(4x^2-12x+9+3\right)=-\left(2x-3\right)^2-3\)

\(-\left(2x-3\right)^2\le0\)với mọi x \(\Rightarrow\)GTNN của Q là -3 đạt được khi x = \(\frac{3}{2}\)

11 tháng 10 2017

P=-x2+4-5 =-x2-1

ta có -x 2 < hoặc bằng 0 với mọi x

=> P=-x2-1<hoặc bằng -1

=>P luôn luôn âm

9 tháng 5 2019

ta có \(-a^2+a-3=-\left(a^2-\frac{2a.1}{2}+\frac{1}{4}\right)+\frac{1}{4}-3\)

  = \(-\left(a-\frac{1}{2}\right)^2-2.75\)

vì \(-\left(a-\frac{1}{2}\right)^2\le0\)với mọi a 

nên biểu thức luôn âm

9 tháng 5 2019

\(-a^2+a-3\)

\(=-\left(a^2-a+3\right)\)

\(=-\left(a^2-2.\frac{1}{2}a+\frac{1}{4}-\frac{1}{4}+3\right)\)

\(=-\left[\left(a-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(a-\frac{1}{2}\right)^2+\frac{11}{4}>0\)

\(\Rightarrow-\left[\left(a-\frac{1}{2}\right)^2+\frac{11}{4}\right]< 0\)

\(\Leftrightarrow-a^2+a-3< 0\)\(\left(đpcm\right)\)