K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2016

\(27-3\left(x+2\right)=6\)

           \(3\left(x+2\right)=27-6\)

           \(3\left(x+2\right)=21\)

                   \(x+2=21:3\)

                   \(x+2=7\)

                            \(x=7-2\)

                            \(x=5\)

\(70-5\left(x-3\right)=45\)

           \(5\left(x-3\right)=70-45\)

           \(5\left(x-3\right)=25\)

                   \(x-3=25:5\)

                   \(x-3=5\)

                           \(x=5+3\)

                            \(x=8\)

\(10+2x=4^5:4^3\)

\(10+2x=16\)

           \(2x=16-10\)

           \(2x=6\)

              \(x=3\)

\(440+2\left(125-x\right)=546\)

              \(2\left(125-x\right)=546-440\)

              \(2\left(125-x\right)=106\)

                      \(125-x=106:2\)

                      \(125-x=53\)

                                   \(x=125-53\)

                                   \(x=72\)

k nha

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

NV
23 tháng 6 2019

a/ \(\left(x-2\right)^2=11+6\sqrt{2}\)

\(\Leftrightarrow\left(x-2\right)^2=\left(3+\sqrt{2}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=3+\sqrt{2}\\x-2=-3-\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5+\sqrt{2}\\x=-1-\sqrt{2}\end{matrix}\right.\)

b/ \(x^2-10x+25=27-10\sqrt{2}\)

\(\Leftrightarrow\left(x-5\right)^2=\left(5-\sqrt{2}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=5-\sqrt{2}\\x-5=\sqrt{2}-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\)

c/ \(4x^2+4x+1=28-10\sqrt{3}\)

\(\Leftrightarrow\left(2x+1\right)^2=\left(5-\sqrt{3}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5-\sqrt{3}\\2x+1=\sqrt{3}-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4-\sqrt{3}}{2}\\x=\frac{-6+\sqrt{3}}{2}\end{matrix}\right.\)

NV
23 tháng 6 2019

d/ \(x^2+2\sqrt{5}x+5=21-4\sqrt{5}\)

\(\Leftrightarrow\left(x+\sqrt{5}\right)^2=\left(2\sqrt{5}-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{5}=2\sqrt{5}-1\\x+\sqrt{5}=1-2\sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}-1\\x=1-3\sqrt{5}\end{matrix}\right.\)

e/ \(x^2+2\sqrt{12}x+12=13-4\sqrt{3}\)

\(\Leftrightarrow\left(x+2\sqrt{3}\right)^2=\left(2\sqrt{3}-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2\sqrt{3}=2\sqrt{3}-1\\x+2\sqrt{3}=1-2\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1-4\sqrt{3}\end{matrix}\right.\)

f/ \(4x^2-12\sqrt{2}x+18=51-10\sqrt{2}\)

\(\Leftrightarrow\left(2x-3\sqrt{2}\right)^2=\left(5\sqrt{2}-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5\sqrt{2}=5\sqrt{2}-1\\2x-2\sqrt{2}=1-5\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{10\sqrt{2}-1}{2}\\x=\frac{1-3\sqrt{2}}{2}\end{matrix}\right.\)

9 tháng 6 2019

a/ \(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)

Mấy câu kia bấm máy tính là xong hết

B2:

a/ \(=\sqrt{-\left(x^2+5\right)}\)

\(x^2+5>0\forall x\Rightarrow-\left(x^2+5\right)< 0\forall x\)

Vậy biểu thức luôn ko đc xđ

b/ x-4\(\ge0\) \(\Rightarrow x\ge4\)

c/ Có -3<0

Để căn thức xđ\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\)

d/ Có -(x2+1)<0\(\forall\) x

Để căn thức có nghĩa \(\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)

22 tháng 10 2018

\(1+4+7+10+...+97+100\)

\(=\frac{\left[\left(100-1\right):3+1\right].\left(100+1\right)}{2}\)

\(=\frac{34.101}{2}\)

\(=1717\)

a)\(6+3^x^{+2}=87\)

\(3^{x+2}=87-6=81=3^4\)

\(\Rightarrow x=4\)

b)\(\left(2x-3\right)^3=125=5^3\)

\(2x-3=5=>2x=8=>x=4\)

P/S: lần sau ghi đề cẩn thận bn vt: 6+3^x+2=87 thì ko ai bt là 3x+2 hay 3x+2 đâu.

vì bằng 3x+2 thì sẽ bằng 8 hơn nên mk làm thế thôi nhưng có bài lại khác đó ......ghi đề  bằng công thức nha=))

2 tháng 10 2019

mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)

1.

\(DK:x\in\left[-4;5\right]\)

\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)

\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)

Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)

\(\Rightarrow\sqrt{x-5}=0\)

\(x=5\left(n\right)\)

Vay nghiem cua PT la \(x=5\)

2 tháng 10 2019

2.

\(DK:x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)

Ta co:

\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)

Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

TH1:

\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)

TH2:(loai)

Vay nghiem cua PT la \(x\in\left[4;9\right]\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

2 tháng 12 2020

a, \(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)

\(\Leftrightarrow2\left(x^2-4x+3x-12\right)=2x^2+4x-x-2-27\)

\(\Leftrightarrow2x^2-2x-24=2x^2+3x-29\Leftrightarrow-5x+5=0\Leftrightarrow x=1\)

b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)

\(\Leftrightarrow x^3-8-x\left(x^2-9\right)=26\Leftrightarrow-8+9x=26\)

\(\Leftrightarrow9x=18\Leftrightarrow x=2\)

9 tháng 6 2019

\(a,=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)

\(\sqrt{29^2-20^2}=\sqrt{\left(29-20\right)\left(29+20\right)}=\sqrt{3^2.7^2}=21\)

9 tháng 6 2019

\(\text{Đặt: }\)\(\hept{\begin{cases}\sqrt{4-\sqrt{15}}=a\\\sqrt{4+\sqrt{15}}=b\end{cases}}\)\(\text{cần tính: a-b}\)

\(\hept{\begin{cases}ab=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}=1\\a^2+b^2=8\end{cases}}\Rightarrow\left(a-b\right)^2=6\Rightarrow a-b=-\sqrt{6}\left(vì:a< b\right)\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............