Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)Ta có:\(A=2019+2019^2+2019^3+2019^4+2019^5+2019^6\)
\(\Rightarrow A=\left(2019+2019^2\right)+\left(2019^3+2019^4\right)+\left(2019^5+2019^6\right)\)
\(\Rightarrow A=\left(2019+2019^2\right)+2019^2.\left(2019+2019^2\right)+2019^4.\left(2019+2019^2\right)\)
+)Ta lại có:20192 tận cùng là 1
=>2019+20192 tân cùng là 9+1=10
=>2019+20192\(⋮2\)
\(\Rightarrow\left(2019+2019^2\right)⋮2;2019^2.\left(2019+2019^2\right)⋮2;2019^4.\left(2019+2019^2\right)⋮2\)
\(\Rightarrow A⋮2\)
Vậy \(A⋮2\left(ĐPCM\right)\)
Chúc bn học tốt
A = 2019 + 20192 + 20193 + 20194 + 20195 + 20196
A = ( 2019 + 20192 ) + ( 20193 + 20194) + ( 20195 + 20196)
A = 1 . ( 2019 + 20192 ) + 20193 . (2019 + 20192 ) + 20195 . ( 2019 + 20192 )
A = 1 . 4 078 380 + 20193 . 4 078 380 + 20195 . 4 078 380
A = 4 078 380 . ( 1 + 20193 + 20195) \(⋮2\rightarrowĐPCM\)
# HOK TỐT #
\(\frac{2019}{210}+\frac{2019}{280}+\frac{2019}{360}+\frac{2019}{450}+\frac{2019}{550}\)
\(=\frac{673}{70}+\frac{2019}{280}+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)
\(=\left[\frac{673}{70}+\frac{2019}{280}\right]+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)
\(=\left[\frac{2692}{280}+\frac{2019}{280}\right]+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)
\(=\frac{673}{40}+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)
\(=\left[\frac{673}{40}+\frac{673}{120}\right]+\frac{673}{150}+\frac{2019}{550}\)
\(=\left[\frac{2019}{120}+\frac{673}{120}\right]+\frac{673}{150}+\frac{2019}{550}\)
\(=\frac{673}{30}+\frac{673}{150}+\frac{2019}{550}\)
\(=\left[\frac{673}{30}+\frac{673}{150}\right]+\frac{2019}{550}\)
\(=\frac{673}{25}+\frac{2019}{550}=\frac{14806}{550}+\frac{2019}{550}=\frac{16825}{550}=\frac{673}{22}\)
P/S : Các a chị check dùm em ạ
( - 2019 - 2019 - 2019 - 2019 ) x ( -25 )
= (-4 ) x 2019 x ( - 25 )
= ( -4 ) x ( -25 ) 2019
= 100 x 2019
= 201900
học tốt
\(A=\frac{2018^{2019}-1}{2018^{2019}+1}=\frac{2018^{2019}+1-2}{2018^{2019}+1}=\frac{2018^{2019}+1}{2018^{2019}+1}-\frac{2}{2018^{2019}+1}=1-\frac{2}{2018^{2019}+1}\)
\(B=\frac{2018^{2019}}{2018^{2019}+2}=\frac{2018^{2019}+2-2}{2018^{2019}+2}=\frac{2018^{2019}+2}{2018^{2019}+2}-\frac{2}{2018^{2019}+2}=1-\frac{2}{2018^{2019}+2}\)
Ta có: \(\frac{2}{2018^{2019}+1}>\frac{2}{2018^{2019}+2}\)
\(\Rightarrow1-\frac{2}{2018^{2019}+1}< 1-\frac{2}{2018^{2019}+2}\)
\(\Rightarrow A< B\)
Vậy .....
Lời giải:
Ta có:
\(A+1=\frac{2019^{2019}+2019^{2020}}{2019^{2019}-1}=\frac{2019^{2019}.2020}{2019^{2019}-1}\)
\(B+1=\frac{2019^{2019}+2019^{2018}}{2019^{2018}-1}=\frac{2019^{2018}.2020}{2019^{2018}-1}\) \(=\frac{2019^{2019}.2020}{2019^{2019}-2019}>\frac{2019^{2019}.2020}{2019^{2019}-1}\)
$\Rightarrow B+1>A+1$
$\Rightarrow B>A$
2019.5+2019:0,1+2019+2019:0,25
= 10095 + 20190 + 2019 + 8076
= 30285+2019+8076
= 32304+8076
= 40380
Tính nhanh hay thực hiện phép tính bạn