Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=B^3 +C
2+1+4=7
7*4=28 chia 3 dư 1
C chia 3 dư 1
B chia 3 dư 1
\(\left\{{}\begin{matrix}A⋮2\\A:3\left(du2\right)\end{matrix}\right.\)\(\Rightarrow\)A chia 6 dư 2
bạn ơi chỗ 2+1+4 với lại 7*4 là sao vậy.bạn giải thích thêm với
http://diendantoanhoc.net/topic/135687-t%C3%ACm-s%E1%BB%91-d%C6%B0-c%E1%BB%A7a-a201420142014201432014201420142014-cho-6/
Ta có: \(1995^{1995}=a_1+a_2+...+a_n\)
\(\Rightarrow a_1+a_2+...+a_n\)là số lẻ
\(\Rightarrow a_1^3+a_2^3+...+a_n^3\) là số lẻ (1)
Ta lại có:
\(\left(1995^{1995}\right)^3=\left(a_1+a_2+...+a_n\right)3\)
\(\Leftrightarrow1995^{5985}=a_1^3+a_2^3+...+a_n^3+3A\)(2)
Từ (1) và (2) \(\Rightarrow3A\)là số chẵn hay \(3A⋮6\)
Vậy số dư của \(a_1^3+a_2^3+...+a_n^3\)chia cho 6 sẽ đúng bằng số dư của \(1995^{5985}\)chia cho 6
Ta có: \(1995\text{≡}3\left(mod6\right)\Rightarrow1995^{5985}\text{≡}3^{5985}\left(mod6\right)\)(3)
Mà ta có: \(3^{5985}-3=3\left(3^{5984}-1\right)=3.2.B=6.B\) (B chỉ là ký hiệu phần còn lại. Ký hiệu cho gọn)
Từ đây thì ta có: \(3^{5985}\text{≡}3\left(mod6\right)\)(4)
Từ (3) và (4) \(\Rightarrow1995^{5985}\text{≡}3^{5985}\text{≡}3\left(mod6\right)\)
Vậy \(a_1^3+a_2^3+...+a_n^3\) chia cho 6 dư 3
cho số tự nhiên A chia 4 dư 2;chia cho 5 dư 1.hỏi Achia cho 20 dư bao nhiêu
ghi lời giải luôn nha ^-^
64489123=1654
654d8g321vb5
1654j865u4
18947l94k8i=15h1l
15648x54647vf=vc54v98d
15648x54647vf=vc54v98d
15648x54647vf=vc54v98d
15648x54647vf=vc54v98d