\(\dfrac{2}{3}x\).Tính f(-2),f(-1),f(0),f(
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Từ kết quả câu a, b ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

Nhận xét:

- Các hàm số y = f(x) = 2/3 x và y = g(x) = 2/3 x + 3 là hai hàm số đồng biến vì khi x tăng thì y cũng nhận được các giá trị tương ứng tăng lên.

- Cùng một giá trị của biến x, giá trị của hàm số y = g(x) luôn luôn lớn hơn giá trị tương ứng của hàm số y = f(x) là 3 đơn vị.

25 tháng 7 2018

a) Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x\)

Ta có : \(f\left(-2\right)=\dfrac{2}{3}.\left(-2\right)=-\dfrac{4}{3}\)

\(f\left(-1\right)=\dfrac{2}{3}.\left(-1\right)=-\dfrac{2}{3}\)

\(f\left(0\right)=\dfrac{2}{3}.0=0\)

\(f\left(\dfrac{1}{2}\right)=\dfrac{2}{3}.\dfrac{1}{2}=\dfrac{1}{3}\)

\(f\left(1\right)=\dfrac{2}{3}.1=\dfrac{2}{3}\)

\(f\left(2\right)=\dfrac{2}{3}.2=\dfrac{4}{3}\)

\(f\left(3\right)=\dfrac{2}{3}.3=2\)

b) Cho hàm số : \(y=g\left(x\right)=\dfrac{2}{3}x+3\)

\(g\left(-2\right)=\dfrac{2}{3}.\left(-2\right)+3=\dfrac{5}{3}\)

\(g\left(-1\right)=\dfrac{2}{3}.\left(-1\right)+3=\dfrac{7}{3}\)

\(g\left(0\right)=\dfrac{2}{3}.0+3=3\)

\(g\left(\dfrac{1}{2}\right)=\dfrac{2}{3}.\dfrac{1}{2}+3=\dfrac{10}{3}\)

\(g\left(1\right)=\dfrac{2}{3}.1+3=\dfrac{11}{3}\)

\(g\left(2\right)=\dfrac{2}{3}.2+3=\dfrac{13}{3}\)

\(g\left(3\right)=\dfrac{2}{3}.3+3=5\)

c) Khi \(x\)lấy cùng một giá trị thì giá trị của \(g\left(x\right)\) lớn hơn giá trị của \(f\left(x\right)\)\(3\) đơn vị.

em xin lỗi nhưng em chưa đủ tuổi để làm bài này xin cáo từ

xin lỗi quản lý olm ạ

14 tháng 6 2021


a) Ta có:
f(−2)=23.(−2)=−43;f(−1)=23.(−1)=−23;f(0)=23.0=0;f(12)=23.12=13;f(1)=23.1=23;f(2)=23.2=43;f(3)=23.3=2.f(−2)=23.(−2)=−43;f(−1)=23.(−1)=−23;f(0)=23.0=0;f(12)=23.12=13;f(1)=23.1=23;f(2)=23.2=43;f(3)=23.3=2.
b) Ta có: 
g(−2)=23.(−2)+3=53;g(−1)=23.(−1)+3=73;g(0)=23.0+3=3;g(12)=23.12+3=103;g(1)=23.1+3=113;g(2)=23.2+3=133;g(3)=23.3+3=5.g(−2)=23.(−2)+3=53;g(−1)=23.(−1)+3=73;g(0)=23.0+3=3;g(12)=23.12+3=103;g(1)=23.1+3=113;g(2)=23.2+3=133;g(3)=23.3+3=5.
c) Khi biến xx lấy cùng một giá trị thì giá trị của hàm số y=f(x)y=f(x) luôn nhỏ hơn giá trị tương ứng của hàm số y=g(x)y=g(x) là 3 đơn vị.

2 tháng 3 2019

a) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Từ kết quả câu a, b ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

Nhận xét:

- Hai hàm số

Để học tốt Toán 9 | Giải bài tập Toán 9

là hai hàm số đồng biến vì khi x tăng thì y cũng nhận được các giá trị tương ứng tăng lên.

- Cùng một giá trị của biến x, giá trị của hàm số y = g(x) luôn luôn lớn hơn giá trị tương ứng của hàm số y = f(x) là 3 đơn vị.

a: f(1)=-1,5

f(2)=-6

f(3)=-13,5

=>f(1)>f(2)>f(3)

b: \(f\left(-3\right)=-1,5\cdot9=-13,5\)

f(-2)=-1,5x4=-6

f(-1)=-1,5x1=-1,5

=>f(-3)<f(-2)<f(-1)

c: Hàm số này đồng biến khi x<0 và nghịch biến khi x>0

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

a)

\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)

\(f(0)=0^2=0\)

\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)

b)

\(2f(a)=g(a)\)

\(\Leftrightarrow 2a^2=3-a\)

\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)

22 tháng 8 2018

điều kiện xác định : \(x\ge0;x\ne1\)

a) ta có : \(G=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{x^2-2x+1}{2}\)

\(\Leftrightarrow G=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)

\(\Leftrightarrow G=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\dfrac{\left(x-1\right)^2}{2}\) \(\Leftrightarrow G=\left(\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\dfrac{\left(x-1\right)^2}{2}=\sqrt{x}-x\)

b) thay \(x=0,16\) vào \(G\) ta có : \(G=\sqrt{0,16}-0,16=0,24\)

c) ta có : \(G=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{1}{4}=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge\dfrac{-1}{4}\)

\(\Rightarrow G_{max}=\dfrac{-1}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

d) ta có : \(G=\sqrt{x}-x\) \(\Rightarrow\) để \(G\in Z\) \(\Rightarrow x=a^2\ne1\)

e) ta có : \(G>0\Leftrightarrow\sqrt{x}-x>0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>0\\1-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 0\\1-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0< x< 1\\x\in\varnothing\end{matrix}\right.\) \(\Rightarrow\left(đpcm\right)\)

f) để \(G< 0\Leftrightarrow\sqrt{x}-x< 0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>0\\1-\sqrt{x}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 0\\1-\sqrt{x}>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x\in\varnothing\end{matrix}\right.\) vậy \(x>1\)

22 tháng 1 2021

bạn có thể làm chi tiết dòng thứ tư phần rút gọn đc ko ? 

26 tháng 12 2018

a, P=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(P=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(P=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(1-x\right)^2}{2}\)
\(P=\dfrac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)^2}{2}\)
\(P=\dfrac{-\sqrt{x}\left(x-1\right)}{\sqrt{x}+1}=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=-\sqrt{x}\left(\sqrt{x}-1\right)=\sqrt{x}-x\)b,x=\(7-4\sqrt{3}=4-2.2\sqrt{3}+3=\left(2-\sqrt{3}\right)^2\)
Thay vào ta có \(P=\sqrt{\left(4-\sqrt{3}\right)^2}-\left(7-4\sqrt{3}\right)\)
\(P=\left|4-\sqrt{3}\right|-7-4\sqrt{3}=4-\sqrt{3}-7+4\sqrt{3}\)
\(P=-3+3\sqrt{3}\)

13 tháng 12 2022

Câu 2:

a: f(1)=2

=>m-1+2m-3=2

=>3m=6

=>m=2

=>f(x)=x+1

=>f(2)=2+1=3

b: f(-3)=0

=>-3m+3+2m-3=0

=>m=0

=>f(x)=-x-3

=>f(x) nghịch biến

12 tháng 9 2017

Ta có \(f\left(1\right)+f\left(10\right)+f\left(100\right)=1+a+b+100+10a+b+10000+100a+b\)

\(=10101+111a+3b\)

Tương tự \(G\left(1\right)+G\left(10\right)+G\left(100\right)=10101+111m+3n\)

Từ đây ta có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)

Xét \(h\left(x\right)=f\left(x\right)-G\left(x\right)\) , khi đó \(h\left(x_0\right)=f\left(x_0\right)-G\left(x_0\right)\)

\(=ax_0+b-mx_0-n=\left(a-m\right)x_0+\left(b-n\right)\)

Để \(h\left(x_0\right)=0\Rightarrow\left(a-m\right)x_0+\left(b-n\right)=0\Rightarrow3\left(a-m\right)x_0+3\left(b-n\right)=0\)

Ta đã có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)

Vậy nên \(3x_0=111\Rightarrow x_0=37\)

Tóm lại \(f\left(37\right)=G\left(37\right)\)