Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(F\left(1\right)=\left(1-1+1\right)^{1994}+\left(1+1-1\right)^{1994}-2=0\)
\(\Rightarrow\)x=1 là 1 nghiệm của phương trình F(x)=0=> F(x) chia hết cho x-1
Đa thức chia có bậc 2 nên đa thức dư có bậc không vượt quá 1.
Gọi đa thức dư là : x + a, có :
\(F\left(x\right)=\left(x^2-1\right)Q\left(x\right)+x+a\)
F(x) chia hết cho x-1=> F(1)=0<=>a+1=0<=>a=-1
có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5
f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2
do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−af(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a
=(x2+1)(C(x).x+C(x)+a)+bx+c−a=(x2+1)(C(x).x+C(x)+a)+bx+c−a
Vậy bx+c−a=x+2⇒\hept{b=1c−a=2bx+c−a=x+2⇒\hept{b=1c−a=2
mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4
vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4
to cho nick
ai choi bb2 thi kb va k dung cho mik