Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)
\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)
\(\Rightarrow x\ge-3\)
\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)
\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)
Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2
a/ \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\) xác định với mọi x
b/ \(\left\{{}\begin{matrix}x+3\ge0\\x+9\ge0\end{matrix}\right.\) \(\Rightarrow x\ge-3\)
c/ \(\left\{{}\begin{matrix}\frac{x-1}{x+2}\ge0\\x+2\ne0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
a) \(\sqrt{x+3}+\sqrt{x^2+9}\)
Ta thấy \(x^2\ge0\Rightarrow x^2+9\ge9\Rightarrow\sqrt{x^2+9}\ge3\)(luôn xác định)
Vậy để biểu thức xác định thì \(\sqrt{x+3}\)phải xác định
\(\Rightarrow x+3\ge0\Leftrightarrow x\ge-3\)
Vậy \(ĐKXĐ:x\ge-3\)
b) \(\sqrt{\frac{x-1}{x+2}}\)
Để biểu thức trên xác định thì x - 1 và x + 2 cùng dấu
\(TH1:\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>-2\end{cases}}\Rightarrow x>1\)
\(TH1:\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -2\end{cases}}\Rightarrow x< -2\)
Vậy \(ĐKXĐ:x>1;x< -2\)
là ri đúng ko \(2\sqrt{x}+\dfrac{3\sqrt{x}}{x-1}=1\)