Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) =\(x^7-x+x^2+x\)+1
=\(x\left(x^6-1\right)+\left(x^2+x+1\right)\)
=\(x\left(x^3-1\right)\left(x^3+1\right)\)\(+\left(x^2+x+1\right)\)
=x(x^3+1)(x-1)(x^2+x+1)+(x^2+x+1)
=[(x^4+x)(x-1)+1](x^2+x+1)
=(x^5-x^4+x^2-x)(x^2+x+1)
Trả lời:
1, x7 + x2 + 1
= x7 + x2 + 1 + x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x
= ( x7 + x6 + x5 ) - ( x6 + x5 + x4 ) + ( x4 + x3 + x2 ) - ( x3 + x2 + x ) + ( x2 + x + 1 )
= x5 ( x2 + x + 1 ) - x4 ( x2 + x + 1 ) + x2 ( x2 + x + 1 ) - x ( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x5 - x4 + x2 - x + 1 )
b, x8 + x7 + 1
= x8 + x7 + 1 + x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x
= ( x8 + x7 + x6 ) - ( x6 + x5 + x4 ) + ( x5 + x4 + x3 ) - ( x3 + x2 + x ) + ( x2 + x + 1 )
= x6 ( x2 + x + 1 ) - x4 ( x2 + x + 1 ) + x3 ( x2 + x + 1 ) - x ( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )
\(x^4-3x^2+9\)
\(=\left(x^2\right)^2+2.x^2.3+3^2-9x^2\)
\(=\left(x^2+3\right)^2-\left(3x\right)^2\)
\(=\left(x^2-3x+3\right)\left(x^2+3x+3\right)\)
\(x^4+3x^2+4\)
\(=\left(x^2\right)^2+2.x^2.2+2^2-x^2\)
\(=\left(x^2+2\right)^2-x^2\)
\(=\left(x^2-x+2\right)\left(x^2+x+2\right)\)
a) \(x^5+x+1=\left(x^5+x+1\right)=x\left(x^4+1+\frac{1}{x}\right)\)
b) và c) Tương tự nha
Chả biết đúng hay sai :v tại dùng máy tính tính ra kết quả rồi phân tích ngược lại
a) \(x^5+x+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)+x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x-1\right)\)
b)\(x^4+2002x^2+2001x+2002=x^4+x^3+1-x^3+x^2+x+2002x^2+2002x+1\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)
\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)
c)Tương tự câu a),ta phân tích được:
\(x^{11}+x^7+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)
Ta có : Nghiệm của g(x) là x = 2 và x = -1
=> Để f(x) chia hết cho g(x) thì f(x) cũng nhận x = 2 và x = -1 làm nghiệm
+) f(2) = 0 < tự thế x để tìm a >
+) f(-1) = 0 < tương tự >
=> a = -30 hoặc a = -9 thì f(x) chia hết cho g(x)