Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\\ =\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}=5+3\sqrt{2}\)
b, \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}+\sqrt{3+\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}\)
\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}\)
\(\Leftrightarrow\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow\sqrt{3}-1+\sqrt{3}+1\)
\(\Leftrightarrow2\sqrt{3}\)
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20-2\cdot3\cdot\sqrt{20}+9}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20}+3}}\)
\(=\sqrt{5-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{5-\sqrt{5-2\sqrt{5}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}-1}\)
\(=\sqrt{4-\sqrt{5}}\)
c)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(=3-2=1\)
d)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}+\sqrt{3+\sqrt{12+2\cdot\sqrt{12}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3+1}\)
\(=2\sqrt{3}\)
\(1.\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}\)
\(2.\sqrt{3+\sqrt{5}}=\dfrac{\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}=\dfrac{\sqrt{5}+1}{\sqrt{2}}\)
\(3.\sqrt{21-6\sqrt{6}}=\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}-\sqrt{3}\)
\(4.\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(5.\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{4+2.2\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)
\(6.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
a) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\left(\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}\right)\cdot3}}{3}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}\)
\(=\dfrac{\sqrt{3}+\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}+\dfrac{\sqrt{2}}{6}\)
b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=...\)
c) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=...\)
d) \(\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+1+2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{4}\)
\(=\dfrac{\sqrt{3\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{2}\)
\(=\dfrac{\sqrt{3-\sqrt{3}-1}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt{\left(3-\sqrt{3}-1\right)\cdot\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+2\sqrt{12}+2\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+4\sqrt{3}+2\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(8+4\sqrt{3}\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}}{2}\)
\(=\dfrac{\sqrt{\left(4-3\right)\cdot4}}{2}\)
\(=\dfrac{\sqrt{1\cdot4}}{2}\)
\(=\dfrac{2}{2}\)
\(=1\)
1. \(=\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}=\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
1/ \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\left(1+\sqrt{12}\right)^2}+\sqrt{3+\left(1+\sqrt{12}\right)^2}\)
\(=\sqrt{5-\left|1+\sqrt{12}\right|}+\sqrt{3+\left|1+\sqrt{12}\right|}\)
\(=\sqrt{5-1-\sqrt{12}}+\sqrt{3+1+\sqrt{12}}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
a/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{1+2\cdot1\cdot2\sqrt{2}+8}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(1+2\sqrt{2}\right)^2}}}\)
\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)
\(=\sqrt{25+2\cdot5\cdot3\sqrt{2}+18}=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)
b/ \(\left(\sqrt{3}-\sqrt{2}\right)\cdot\sqrt{5+2\sqrt{6}}=\sqrt{3\left(5+2\sqrt{6}\right)}-\sqrt{2\left(5+2\sqrt{6}\right)}\)
\(=\sqrt{15+6\sqrt{6}}-\sqrt{10+4\sqrt{6}}\)
\(=\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(2+\sqrt{6}\right)^2}\)
\(=3+\sqrt{6}-2-\sqrt{6}=1\)
c/ \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\sqrt{\left(1+2\sqrt{3}\right)^2}}+\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}\)
\(=\sqrt{5-1-2\sqrt{3}}+\sqrt{3+1+2\sqrt{3}}\)
\(=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\sqrt{3}-1+1+\sqrt{3}=2\sqrt{3}\)
a) \(=3-\sqrt{5}\)
b) \(=\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{12}-\sqrt{1}\right)^2}\)
\(=\left|\sqrt{3}-1\right|-\left|2\sqrt{3}-1\right|\)
\(=\sqrt{3}-1-\left(2\sqrt{3}-1\right)\)
\(=\sqrt{3}-1-2\sqrt{3}+1\)
\(=-\sqrt{3}\)
đúng rồi yey, nhưng tớ trả biết phần a có dúng đề k nữa.
làm sao cô cho câu dễ thế dk