Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\)
\(\Leftrightarrow\dfrac{1}{5}A=\dfrac{1}{5^2}+\dfrac{1}{5^3}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{100}}\)
Lây vế trừ vế, ta được:
\(A-\dfrac{1}{5}A=\dfrac{4}{5}A\)
\(\dfrac{4}{5}A=\dfrac{1}{5}-\dfrac{1}{5^{100}}\)
\(\Leftrightarrow A=\dfrac{\dfrac{1}{5}-\dfrac{1}{5^{100}}}{\dfrac{4}{5}}=\dfrac{\dfrac{1}{5}.\left(1-\dfrac{1}{5^{99}}\right)}{\dfrac{1}{5}.4}=\dfrac{1-\dfrac{1}{5^{99}}}{4}\)
Vậy \(A=\dfrac{1-\dfrac{1}{5^{99}}}{4}\).
Chúc bạn học tốt!
Bài 2:
Có:
\(B=3+3^3+3^5+...+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\)
\(\Leftrightarrow B=273+...+3^{1986}.273\)
\(\Leftrightarrow B=273\left(1+...+1986\right)\)
Vì \(273⋮13\)
Nên \(B=273\left(1+...+1986\right)⋮13\)
Vậy \(B⋮13\)
Lại có:
\(B=3+3^3+3^5+...+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+3^{1984}\left(3+3^3+3^5+3^7\right)\)
\(\Leftrightarrow B=2460+...+3^{1984}.2460\)
\(\Leftrightarrow B=2460\left(1+...+3^{1984}\right)\)
Vì \(2460⋮41\)
Nên \(B=2460\left(1+...+3^{1984}\right)⋮41\)
Vậy \(B⋮41\).
Chúc bạn học tốt!
\(4\dfrac{1}{3}.\dfrac{4}{9}+13\dfrac{2}{3}.\dfrac{4}{9}\)\(=\dfrac{4}{9}\left(4\dfrac{1}{3}+13\dfrac{2}{3}\right)=\dfrac{4}{9}.18=8\)
\(5\dfrac{1}{4}.\dfrac{3}{8}+10\dfrac{3}{4}.\dfrac{3}{8}=\dfrac{3}{8}\left(5\dfrac{1}{4}+10\dfrac{3}{4}\right)=\dfrac{3}{8}.16=6\)
\(B=\dfrac{1}{4}+\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{19}\right)\)
Vì \(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}>\dfrac{1}{9}+\dfrac{1}{9}+...+\dfrac{1}{9}\) nên \(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}>\dfrac{5}{9}>\dfrac{1}{2}\).
Vì \(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{19}>\dfrac{1}{19}+\dfrac{1}{19}+...+\dfrac{1}{19}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{19}>\dfrac{10}{19}>\dfrac{1}{2}\).
\(\Rightarrow B>\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{2}>1\)
\(\Rightarrow B>1\)
B=\(\dfrac{1}{4}+\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{19}\right)>\dfrac{1}{4}+15nhân\dfrac{1}{20}\)
B>\(>\dfrac{1}{4}+\dfrac{15}{20}=\dfrac{1}{4}+\dfrac{3}{4}=1\)
Suy ra B>1
tính M hay chứng minh M ko là stn hay đầu bài là j vậy bn????
\(a.\)
\(\dfrac{1}{3}\left(\dfrac{1}{2}-6\right)+5x=x-\dfrac{3}{5}\)
\(\Rightarrow\dfrac{1}{6}-2+5x=x-\dfrac{3}{5}\)
\(\Rightarrow\dfrac{1}{6}-2+\dfrac{3}{5}=-5x+x\)
\(\Rightarrow-4x=-\dfrac{37}{30}\)
\(\Rightarrow4x=\dfrac{37}{30}\)
\(\Rightarrow x=\dfrac{37}{120}\)
\(b.\)
\(\dfrac{3}{2}x-1\dfrac{1}{2}=x-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{3}{2}x-\dfrac{3}{2}=x-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{3}{2}x-x=\dfrac{3}{2}-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{2}x=\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{2}\)
\(c.\)
\(x-\dfrac{5}{4}=\dfrac{1}{3}-\dfrac{3}{4}x\)
\(\Rightarrow x+\dfrac{3}{4}x=\dfrac{1}{3}+\dfrac{5}{4}\)
\(\Rightarrow\dfrac{7}{4}x=\dfrac{19}{12}\)
\(\Rightarrow x=\dfrac{19}{21}\)
\(d.\)
\(\dfrac{3}{2}\left(x-\dfrac{5}{3}\right)-\dfrac{7}{5}=x+1\)
\(\Rightarrow\dfrac{3}{2}x-\dfrac{5}{2}-\dfrac{7}{5}=x+1\)
\(\Rightarrow\dfrac{3}{2}x-\dfrac{39}{10}=x+1\)
\(\Rightarrow\dfrac{3}{2}x-x=\dfrac{39}{10}+1\)
\(\Rightarrow\dfrac{1}{2}x=\dfrac{49}{10}\)
\(\Rightarrow x=\dfrac{49}{5}\)
\(e.\)
\(\dfrac{2}{3}\left|4x+3\right|=\dfrac{6}{15}\)
\(\Rightarrow\left|4x+3\right|=\dfrac{3}{5}\)
\(\Rightarrow\left[{}\begin{matrix}4x+3=\dfrac{3}{5}\\4x+3=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=-\dfrac{12}{5}\\4x=-\dfrac{18}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-\dfrac{9}{10}\end{matrix}\right.\)
a) \(\dfrac{1}{3}.\left(\dfrac{1}{2}-6\right)+5x=x-\dfrac{3}{5}\Leftrightarrow\dfrac{1}{6}-2+5x=x-\dfrac{3}{5}\)
\(\Leftrightarrow5x-x=-\dfrac{3}{5}-\dfrac{1}{6}+2\Leftrightarrow4x=\dfrac{37}{30}\Leftrightarrow x=\dfrac{\dfrac{37}{30}}{4}=\dfrac{37}{120}\)
vậy \(x=\dfrac{37}{120}\)
b) \(\dfrac{3}{2}x-1\dfrac{1}{2}=x-\dfrac{3}{4}\Leftrightarrow\dfrac{3}{2}x-x=\dfrac{-3}{4}+1\dfrac{1}{2}\Leftrightarrow\dfrac{1}{2}x=\dfrac{-3}{4}+\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{1}{2}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.2=\dfrac{6}{4}=\dfrac{3}{2}\) vậy \(x=\dfrac{3}{2}\)
c) \(x-\dfrac{5}{4}=\dfrac{1}{3}-\dfrac{3}{4}x\Leftrightarrow x+\dfrac{3}{4}x=\dfrac{1}{3}+\dfrac{5}{4}\Leftrightarrow\dfrac{7}{4}x=\dfrac{19}{12}\)
\(\Leftrightarrow x=\dfrac{\dfrac{19}{12}}{\dfrac{7}{4}}=\dfrac{19}{21}\) vậy \(x=\dfrac{19}{21}\)
d) \(\dfrac{3}{2}\left(x-\dfrac{5}{3}\right)-\dfrac{7}{5}=x+1\Leftrightarrow\dfrac{3}{2}x-\dfrac{5}{2}-\dfrac{7}{5}=x+1\)
\(\Leftrightarrow\dfrac{3}{2}x-x=1+\dfrac{5}{2}+\dfrac{7}{5}\Leftrightarrow\dfrac{1}{2}x=\dfrac{49}{10}\Leftrightarrow x=\dfrac{49}{10}.2=\dfrac{49}{5}\)
vậy \(x=\dfrac{49}{5}\)
e) \(\dfrac{2}{3}\left|4x+3\right|=\dfrac{6}{15}\Leftrightarrow\left|4x+3\right|=\dfrac{\dfrac{6}{15}}{\dfrac{2}{3}}=\dfrac{3}{5}\)
th1 : \(4x+3\ge0\Leftrightarrow4x\ge-3\Leftrightarrow x\ge\dfrac{-3}{4}\)
\(\Rightarrow\left|4x+3\right|=\dfrac{3}{5}\Leftrightarrow4x+3=\dfrac{3}{5}\Leftrightarrow4x=\dfrac{3}{5}-3=\dfrac{-12}{5}\)
\(\Leftrightarrow x=\dfrac{\dfrac{-12}{5}}{4}=\dfrac{-3}{5}\left(tmđk\right)\)
th2: \(4x+3< 0\Leftrightarrow4x< -3\Leftrightarrow x< \dfrac{-3}{4}\)
\(\Rightarrow\left|4x+3\right|=\dfrac{3}{5}\Leftrightarrow-\left(4x+3\right)=\dfrac{3}{5}\Leftrightarrow-4x-3=\dfrac{3}{5}\)
\(\Leftrightarrow4x=-3-\dfrac{3}{5}=\dfrac{-18}{5}\Leftrightarrow x=\dfrac{\dfrac{-18}{5}}{4}=\dfrac{-9}{10}\left(tmđk\right)\)
vậy \(x=\dfrac{-3}{5};x=\dfrac{-9}{10}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)
\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)
\(a,\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
bài 3 :
Số học sinh trung bình là :
\(1200\times\dfrac{5}{8}=750\) ( hs)
Số học sinh khá là :
\(750\times\dfrac{2}{5}=300\) (hs)
Số học sinh giỏi là :
\(1200-750-300=150\left(hs\right)\)
b) So với cả trường chứ ?
3b ) Tỉ số của hs giỏi so với toàn trường :150: 1200 = 0,125
Tỉ số phần trăm của hs giỏi so vs toàn trường là : 12,5%
a) \(\left(\dfrac{-3}{4}+\dfrac{2}{5}\right):\dfrac{3}{7}+\left(\dfrac{3}{5}+\dfrac{-9}{4}\right):\dfrac{3}{7}\)
\(=\left(\dfrac{-3}{4}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{-9}{4}\right):\dfrac{3}{7}\)
\(=-2:\dfrac{3}{7}=\dfrac{-14}{3}\)
\(\dfrac{7}{8}:\left(\dfrac{2}{9}-\dfrac{1}{18}\right)+\dfrac{7}{8}:\left(\dfrac{1}{36}-\dfrac{5}{12}\right)\)
\(=\dfrac{7}{8}:\dfrac{1}{6}+\dfrac{7}{8}:\dfrac{-7}{18}\)
\(=\dfrac{7}{8}:\left(\dfrac{1}{6}+\dfrac{-7}{18}\right)=\dfrac{7}{8}:\dfrac{-2}{9}=\dfrac{63}{-16}\)
Giải:
a) S=52/1.6+52/6.11+52/11.16+52/16.21+52/21.26
S=5.(5.1/6+5/6.11+5/11.16+5/16.21+5/21.26)
S=5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26)
S=5.(1/1-1/26)
S=5.25/26
S=125/26
b) (1-1/2).(1-1/3).(1-1/4).(1-1/5).....(1-1/19).(1-1/20)
=1/2.2/3.3/4.4/5.....18/19.19/20
=1.2.3.4.....18.19/2.3.4.5.....19.20
=1/20
Chúc bạn học tốt!
Cảm ơn bn