Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Link nè lên google search nha!
https://olm.vn/hoi-dap/question/162533.html
A = \(\frac{1}{1\cdot3}\)+ \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\)+ ..... + \(\frac{1}{99.101}\)
= \(\frac{1}{2}\). ( \(\frac{1}{1.3}\)+ \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\)+ ...... + \(\frac{1}{99.101}\))
= \(\frac{1}{2}\). ( 1 - \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+ ........ + \(\frac{1}{99}\)- \(\frac{1}{101}\))
= \(\frac{1}{2}\). ( 1 - \(\frac{1}{101}\))
= \(\frac{1}{2}\). \(\frac{100}{101}\)= \(\frac{50}{101}\)
Thấy đúng thì cho mình một k nha!!!
S = (1 + 3 + 5 + 7+ 9 + 99 + 101) - ( 2 + 4 + 6 + ...+ 78 + 80)
Đặt A = 1 + 3 + 5 +7 + 9 +...+99 + 101
B = 2 + 4 + 6 + ...+ 78 + 80
A = 1 + 3 + 5 + 7 + 9+...+ 101
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (101 - 1 ): 2 + 1 = 51 (số )
Tổng A = (101 + 1)\(\times\) 51 : 2 = 2601
B = 2 + 4 + 6 + ...+ 78 + 80
Dãy số trên là dãy số cách đều với khoảng cách là: 4 - 2 = 2
Số số hạng của dãy số trên là: (80 - 2): 2 + 1 = 40
Tổng B = (80 + 2)\(\times\) 40: 2 = 1640
S = 2601 - 1640
S = 961
Tổng của dãy 1 + 3 + 5 + 7 + ... + 99 + 101 là:
- Số số hạng là: (101 - 1) : 2 + 1 = 51 số
- Tổng là: (101 + 1) x 51 : 2 = 2601
Tổng của dãy 2 + 4 + 6 + ... + 78 + 80 là:
- Số số hạng là: (80 - 2) : 2 + 1 = 40 số
- Tổng là: (80 + 2) x 40 : 2 = 1640
Vậy (1 + 3 + 5 + ... + 99 + 101) - (2 + 4 + 6 + ... + 78 + 80) = 2601 - 1640 = 961
Nếu làm cách lớp 5:
Ta có: = (1 -3) + ( 5 -7) + ( 9 - 11) + (13 - 15) + ( 17 - 19) + ...... +(97 - 99) + 101
= -1 + -1 + ........ + -1 + 101
= -50 + 101
= 51
1-3+5-7+9-11+13-15+17-19+...+97-99+101=(-2)+(-2)+(-2)+(-2)+(-2)+.....+(-2)+101 [50 giá trị -2]
=(-2)*100+101=-99
1) A=1-2+3-4+5-6+.....+99-100+101?
Giải
A=1-2+3-4+5-6+.....+99-100+101.
Ta viết lại tổng như sau:
A = 101 - 100 + 99 - 98 + ... + 5 - 4 + 3 - 2 + 1
A = 1 + 1 + ... + 1 + 1 + 1
Số phép trừ trong dãy tính là:
( 101 - 1 ) : 2 = 50 ( phép trừ )
Kết quả dãy số là:
1 x 50 + 1 = 51
Vậy:
A=1-2+3-4+5-6+.....+99-100+101.
A= 51
2) B=1+11+21+...+991
=(1+991)+(2+998)+...
=992 x 50
=4960
\(1.3+2.4+3.5+...+99.101\)
\(=3+8+15+...+9999\)
Số số hạng \(=\left(9999-3\right):2+1=4999\)
Tổng \(=\left(9999+3\right).4999:2=24999999\)
Đặt : \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=1-\frac{1}{101}\)
\(2A=\frac{100}{101}\)
\(A=\frac{100}{101}\cdot\frac{1}{2}=\frac{50}{101}\)
Ta có:
a)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
b)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{210}\)
\(=2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}\right)\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{21}\right)=2.\frac{19}{42}=\frac{19}{21}\)
Ta có:
Suy ra:
Tương tự ta có:
. . .
Cộng các vế của các đẳng thức trên ta được:
- Vế trái: tổng S
- Vế phải: số thứ hai ở dòng trên sẽ triệt tiêu với số thứ nhất ở dòng dưới ⇒ vế phải còn lại số thứ nhất của dòng đầu tiên trừ đi số thứ hai của dòng cuối cùng.
Rút gọn phân số trên (chia cả tử và mẫu cho 2) ta được: