Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Có (x-2)2\(\ge\)0
(y-2)2\(\ge\)0
=>(x-2)2.(y-3)2\(\ge\)0
Mà (x-2)2.(y-3)2=-4
Vậy không có x, y thỏa mãn
Có 111...1=11.1010...01
Vậy số 111...1(2002 số 1) sẽ chia hết cho 11 nên nó sẽ là hợp sô
(phần này hơi sơ sài nên có cái gì phải hỏi luôn
\(Ta\)có:
Tổng các chữ số của M là:
\(1+1+1+...+1=2010.1=2010⋮3\)
\(\Rightarrow M\)là hợp số
Vậy...
1/ P = 123456....20132014
Từ 1 - 9 có 9 chữ số
từ 10 -99 có: [[99-10]: 1 + 1]x 2 = 180 chữ số
từ 100 - 999 có: [[999-100]: 1 + 1] x 3 = 2700 chữ số
từ 1000 - 2014 có: [[2014 - 1000]: 1 + 1] x 4 = 4060 chữ số
=> P có: 4060 + 2700 + 180 + 9 = 6949 chữ số
2/
n là số n tố > 3 => n lẻ => 22 lẻ
=> n2+ 2015 chia hết cho 2 nên là hợp số
3/
Gọi 1994xy là A. A chia hết cho 72 => A chia hết cho 8 và 9
Vì A chia hết cho 8 nên A chẵn => y E {0; 2; 4; 6; 8}
* nếu y = 0 => x = 4
* nếu y = 2 => x = 2
* nếu y = 4 => x E {0; 9}
* nếu y = 6 => x = 7
* nếu y = 8 => x = 5
Vậy [x,y] = [0;4],[2;2],[4;0 và 9],[6;7],[8;5]
4/
x/9 - 3/ y = 1/18
=> 2x/18 - 3/y = 1/18
=> 3/y = 1/18 - 2x/18
=> 3/y = 1-2x/18
=> y - 2xy = 54=> y[1-2x] = 54
mà 1 - 2x lẻ nên y chẵn
mà y thuộc ước 54 => y E {-2;2;-6;6;-18;18;-54;54}
y | -2 | 2 | -6 | 6 | -18 | 18 | -54 | 54 |
1-2x | -27 | 27 | -9 | 9 | -3 | 3 | -1 | 1 |
2x | 28 | -26 | 10 | -8 | 4 | -2 | 2 | 0 |
x | 14 | -13 | 5 | -4 | 2 | -1 | 1 | 0 |
vậy: [x,y] = [14;-2],[2;-13],[-6;5],[6;-4],[-18;2],[18;-1],[-54;1],[54;0]
5/
Theo đề bài, ta có:
b E BC[14, 21]
mà b nhỏ nhất nên b = 42
=> 14a = 42 . 5
=> a = 15;
=> 21c = 28 . 42
=> c = 56;
từ đó suy ra
6d = 11 . 56
=> d = 308/3
=> d k là số tự nhiên. Vậy a,b,c,d E tập rỗng
bạn đang làm bài trong sách giáo khoa đúng ko ? mình cũng đang làm nè tick cho minh phát nhé
a) 111 = 3 . 37.
Tập hợp Ư(111) = {1; 3; 37; 111}.
b) Từ câu a suy ra phải điền các chữ số như sau 37 . 3 = 111.
a) 111 = 3 . 37. Tập hợp Ư(111) = {1; 3; 37; 111}.
b) Từ câu a suy ra phải điền các chữ số như sau 37 . 3 = 111
1) Đặt phép chia 1994xy cho 72, ta có:
1994xy : 72 = 27 dư 50xy
Xét x=1 => 501y : 72 = 6 dư 69y
Mà: số chia hết cho 72 gần số 69y là 648 và 720
=> 69y không chia hết cho 72 với mọi giá trị y
Từ đó ta thấy để 50xy chia hết cho 72 thì 50xy chia 72 phải có số dư là 72
=> x=4
Thay x=4 ta có: 504y : 72 = 6 dư 72y
Để 72y chia hết cho 72 thì y=0
Vậy các giá trị x,y cần tìm là: x=4; y=0
2) Ta có: n là số nguyên tố >3
=> n có dạng n= 3k+1 (k\(\in\)N*)
=> n2+2015 = 3k+1+2015
=> n2+2015 = 3k+2016
Do: 3k\(⋮\)3, 2016\(⋮\)3
=> 3k+2016 \(⋮\)3
=> n2+2015 \(⋮\)3
Vậy n2+2015 là hợp số
1.
$2xy+x-14y=21$
$\Rightarrow x(2y+1)-7(2y+1)=14$
$\Rightarrow (x-7)(2y+1)=14$
Với $x,y$ nguyên thì $x-7, 2y+1$ cũng là số nguyên. Mà $(x-7)(2y+1)=14$ nên $2y+1$ là ước của 14
Mà $2y+1$ lẻ nên $2y+1\in \left\{\pm 1; \pm 7\right\}$
Nếu $2y+1=1\Rightarrow x-7=14$
$\Rightarrow y=0; x=21$
Nếu $2y+1=-1\Rightarrow x-7=-14$
$\Rightarrow y=-1; x=-7$
Nếu $2y+1=7\Rightarrow x-7=2$
$\Rightarrow y=3; x=9$
Nếu $2y+1=-7\Rightarrow x-7=-2$
$\Rightarrow y=-4; x=-5$
Bài 2:
\(A=\underbrace{111...1}_{2014}=10^{2013}+10^{2012}+...+10+1\)
\(=(1+10)+(10^2+10^3)+(10^4+10^5)+...+(10^{2012}+10^{2013})\\ =(1+10)+10^2(1+10)+10^4(1+10)+....+10^{2012}(1+10)\\ =(1+10)(1+10^2+10^4+...+10^{2012})\ =11(1+10^2+10^4+...+1)^{2012})\)
$\Rightarrow A$ là hợp số.