K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

Gọi a=da'

b=db'

ƯCLN(a,b)=d

BCNN(a,b)=da'b'

Theo đề ta có

da'+2db'=48 =>d(a'+2b')=48 =>48 chia hết cho d (1)

UCLN(a,b)+3BCNN(a,b)=114 =>d(1+3a'b')=114 =>114 chia hết cho d (2)

Từ (1) và (2) =>d thuộc ƯC(114;48)

UCLN(48;114)=6

Vậy d thuộc Ư(6)

Ta có d(1+3a'b')=114, vì 114 là 1 số chia hết ho 3 nên 1 trong 2 thừa số chia hết cho 3, vì 1+3a'b' chia 3 dư 1 nên d chia hết cho 3

Vậy d=6 hoặc d=3

Lần lượt thử d=6 hoặc d=3 ta được 2 trường hợp

TH1 a=36 và b=6

TH2: a=12 và b=18

Giả sử d = (a;b). Khi đó ta có:

\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)

Ta có: md+2nd=48  và  3mnd+d=114

md+2nd=48⇒d(m+2n)=48

3mnd+d=114⇒d(3mn+1)=114

Suy ra d∈ƯC(48,114)=(6;3;2;1)

Nếu d = 1, ta có: 3mn+1=114⇒3mn=113

Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 2 ta có: 3mn+1=57⇒3mn=56

Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 3 ta có: 3mn+1=38⇒3mn=37

Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6

Và m+2n=8

Suy ra m = 2, n = 3 hoặc m = 6, n = 1

Vậy a = 12, b = 36 hoặc a = 36, b = 6.

# Chúc bạn học tốt!

8 tháng 12 2019

Bài 2 : 

a) Vì ƯCLN(a,b)=16 nên ta có : \(\hept{\begin{cases}a⋮16\\b⋮16\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=16m\\b=16n\\ƯCLN\left(m,n\right)=1\end{cases}}\)

Mà a+b=128

\(\Rightarrow\)16m+16n=128

\(\Rightarrow\)16(m+n)=128

\(\Rightarrow\)m+n=8

Vì ƯCLN(m,n)=1 và m>n nê ta có bảng sau :

m       7          5

n        1           3

a        112       80

b         16        48

Vậy (a;b)\(\in\){(112;16):(80;48)}

b) Gọi ƯCLN(2n+1,6n+1) là d  (d\(\in\)N*)

Vì ƯLN(2n+1,6n+1)=d nên ta có : 2n+1\(⋮\)d và 6n+1

\(\Rightarrow\)2n+1-6n+1\(⋮\)d

\(\Rightarrow\)6(2n+1)-2(6n+1)\(⋮\)d

\(\Rightarrow\)12n+6-12n+2\(⋮\)d

\(\Rightarrow\)4\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư(4)={1;2;4}

Mà 2n+1 là số lẻ

\(\Rightarrow\)d=1

\(\Rightarrow\)2n+1 và 6n+1 là 2 số nguyên tố cùng nhau

Vậy 2n+1 và 6n+1 là 2 số nguyên tố cùng nhau.

8 tháng 12 2019

Bài 3 :

Ta có : A=1+2+23+...+22018

         2A=2+22+24+...+22019

\(\Rightarrow\)2A-A=(2+22+24+...+22019)-(1+2+23+...+22018)

\(\Rightarrow\)A=22019-1

Mà B=22019-1

\(\Rightarrow\)A=B

Vậy A=B.

17 tháng 12 2017

Bài 1:

Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)

Thay a = 16.m, b = 16.n vào a+b = 128, ta có:

\(16.m+16.n=128\)

\(\Rightarrow16.\left(m+n\right)=128\)

\(\Rightarrow m+n=128\div16\)

\(\Rightarrow m+n=8\)

Vì m và n nguyên tố cùng nhau

\(\Rightarrow\) Ta có bảng giá trị:

m1835
n8153
a161284880
b128168048

Vậy các cặp (a,b) cần tìm là:

  (16; 128); (128; 16); (48; 80); (80; 48).

Bài 2:

Gọi d là ƯCLN (2n+1, 2n+3), d  \(\in\) N*

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Vì 2n+3 và 2n+1 không chia hết cho 2

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)

\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.

17 tháng 12 2017

cam on ban nhieu lam cuu tinh