Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
3s1=3+32+33+34+...+350
=>3s1-s1=3+32+33+34+...+350-1-3-32-33-...-349
=>2s1=350-1
=>a1=(350-1)/2
Tính s2 tương tự như s1
ta lấy 4s2-s2 đoực kết quả s2=(450-1)/3
S1 = 1+3+32+33+34+..........+349
3S1 = 3+32+33+34+35+.........+350
3S1 - S1 = 3+32+33+34+35+.........+350 - (1+3+32+33+34+..........+349)
= 3+32+33+34+35+.........+350 - 1 - 3 - 32 - 33 - 34-..........-349
2S1 = 350 - 1
S1 =\(\frac{3^{50}-1}{2}\)
Ta có: \(A=2^0+2+2^2+...+2^{49}+2^{50}\)
\(2A=2+2^2+2^3+...+2^{50}+2^{51}\)
\(2A-A=2^{51}-2^0\)
Hay \(A=2^{51}-1\)
Hok "tuốt" nha^^
a) S1 = 2.4 + 4.6 + 6.8 + ...+ 100.102
6.S1 = 2.4.6 + 4.6.(8 - 2) + 6.8.(10 - 4) + ...+ 100.102.(104 - 98)
6.S1 = 2.4.6 + 4.6.8 - 2.4.6 + 6.8.10 - 4.6.8 + ....+ 100.102.104 - 98.100.102
6.S1 = (2.4.6 + 4.6.8 + 6.8.10 + ...+ 100.102.104) - (2.4.6 + 4.6.8 + ...+ 98.100.102)
6.S1 = 100.102.104 => S1 = 100.102.104 : 6 = ...
b) S2 = (1 - 2)(1+ 2) + (3 - 4).(3 + 4) + ...+ (55 - 56).(55 + 56) + 572
= (-1).(1 + 2) + (-1).(3 + 4) + ...+ (-1).(55 + 56) + 572 = (-1).(1 + 2+ 3 + 4+...+ 55 + 56) + 572 = -(1+ 56).56 : 2 + 572 = ...
c) S3 = 1.2.( 3 - 1) + 2.3.(4 - 1) + 3.4.(5 - 1) + ....+ 20.21.(22 - 1)
= (1.2.3 + 2.3.4 + 3.4.5 + ...+ 20.21.22) - (1.2 + 2.3 + ...+ 20.21)
Tính A = 1.2.3 + 2.3.4 + 3.4.5 + ...+ 20.21.22
4.A = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5(6 - 2) + ...+ 20.21.22.(23 - 19)
4.A = (1.2.3.4 + 2.3.4.5 + ...+ 20.21.22.23) - (1.2.3.4 + 2.3.4.5 + ....+ 19.20.21.22)
4.A = 20.21.22.23 => A =
Tính B = 1.2 + 2.3 + ...+ 20.21
3.A = 1.2.3 + 2.3.(4 - 1) + ...+ 20.21.(22 - 19) = (1.2.3 + 2.3.4 + ...+ 20.21.22) - (1.2.3+ ...+ 19.20.21) = 20.21.22 => B = ...
d) S4 = 1 + 8 + 27 + 64 + 125 = ....
\(A=2^1+2^2+2^3+2^4+2^5+2^6+2^7+...+2^{99}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+2^7.7+...+2^{97}.7\)
\(=\left(2+2^4+2^7+...+2^{97}\right).7⋮7\)
\(\Rightarrow A⋮7\)
A = 21 +22 +23 +24 +25 +26 +27 ….+ 299
A = (21 +22 +23) +(24 +25 +26) + ….+ (297+298+299)
A = 14 + (21.23 +22.23 +23.23) + ….+ (21.296+22.296+23.296)
A = 14 + 23(21+22+23) + ...... + 296(21+22+23)
A = 14.1 + 23.14 + ....... + 296.14
A = 14.(1+23+....+296)
14 \(⋮\) 7
=> A \(⋮\) 7 (đpcm)
a ) \(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2011}\)
\(\Rightarrow2A-A=\left(2+...+2^{2011}\right)-\left(2^0+2^1+...+2^{2010}\right)\)
\(\Rightarrow2A-A=2^{2011}-2^0\)
\(\Rightarrow A=2^{2011}-1\)
b ) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3B-B=\left(3+3^2...+3^{2011}\right)-\left(1+3+...+3^{2010}\right)\)
\(\Rightarrow2B=3^{2011}-1\)
\(\Rightarrow B=\frac{3^{2011}-1}{2}\)
Chúc bạn học tốt !!!