Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 )
<=> 4(x2+2x+1) + (4x2 -4x +1) - 8(x2 -1) =11
<=>4x2 + 8x + 4 + 4x2 -4x +1 -8x2 +8 = 11
<=> 4x + 13 =11 <=> 4x = -2
=> x =\(\frac{-1}{2}\)
1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2
2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi a = 1
3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)
4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)
Do đó \(a^{2018}+b^{2019}=1+1=2\)
5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)
\(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Rightarrow\left(2x^2+4xy+2y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
Khi đó: \(A=\left(-1+1\right)^{2014}+\left(-1+2\right)^{2015}+\left(1-1\right)^{2016}\)
\(=0+1+0=1\)
a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x
= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)
= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2
= 0 (đpcm)
1)
a)\(A=2013.2015=2013.\left(2014+1\right)=2013.2014+2013\)
\(B=2014^2=2014.\left(2013+1\right)=2014.2013+2014\)
Ta có: \(2014.2013+2014>2013.2014+2013\)
\(\Rightarrow2014^2>2013.2015\)
\(\Rightarrow B>A\)
Vậy \(B>A\)
b) \(A=4.\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=2.4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3-1\right).\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^{16}-1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\)
\(\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
2)
a)\(9x^2-6x+3=\left(3x\right)^2-2.3x.1+1^2+2\)
\(=\left(3x-1\right)^2+2\)
Ta có: \(\left(3x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x-1\right)^2+2\ge2\forall x\)
\(\Rightarrow\left(3x-1\right)^2+2>0\forall x\)
đpcm
b)\(x^2+y^2+2x+6y+16\)
\(=\left(x^2+2x+1\right)+\left(y^2+2.y.3+3^2\right)+6\)
\(=\left(x+1\right)^2+\left(y+3\right)^2+6\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x+1\right)^2+\left(y+3\right)^2+6\ge6\forall x;y\)
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+6>0\)
đpcm
Tham khảo nhé~
1.
a) A = 2013.2015 = (2014 - 1)(2014 + 1) = 20142 - 1
Vì 20142 - 1 < 20142 => A < B
Vậy A < B
b) \(A=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\Leftrightarrow A=\frac{3^{128}-1}{2}\)
\(\Rightarrow A< B\)
Vậy A < B
Bài 2:
a) \(9x^2-6x+2=\left(3x\right)^2-2.3x+1+2=\left(3x-1\right)^2+2\)
Vì \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+2>0\)
=> 9x2 - 6x + 2 luôn nhận giá trị dương với mọi x
b) \(x^2+y^2+2x+6y+16=\left(x^2+2x+1\right)+\left(y^2+6y+9\right)+6=\left(x+1\right)^2+\left(y+3\right)^2+6\)
Vì \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+6>0\)
=> x2 + y2 + 2x + 6y + 16 luôn nhận giá trị dương với mọi x