Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
b) \(5x^2-5xy-3x+3y\)
\(=5x\left(x-y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(5x-3\right)\)
c) \(x^2-2x-4y^2+1\)
\(=\left(x-1\right)^2-4y^2\)
\(=\left(x-2y-1\right)\left(x+2y-1\right)\)
a.\(3x^2-11x+6\)
= \(3x^2-9x-2x+6\)
=\(3x\left(x-3\right)-2\left(x-3\right)\)
=\(\left(x-3\right)\left(3x-2\right)\)
b\(8x^2+10x-3\)
=.\(8x^2-2x+12x-3\)
=\(2x\left(4x-1\right)+3\left(4x-1\right)\)
=\(\left(4x-1\right)\left(2x+3\right)\)
d.\(x^2-y^2+10x-6y+16\)
=\(\left(x^2+10x+25\right)-\left(y^2+6y+9\right)\)
=\(\left(x+5\right)^2-\left(y+3\right)^2\)
=\(\left(x+5-y-3\right)\left(x+5+y+3\right)\)
=\(\left(x-y+2\right)\left(x+y+8\right)\)
e.\(x^4+x^2y^2+y^4\)
=\(x^4+2x^2y^2+y^4-x^2+y^2\)
=\(\left(x^2+y^2\right)^2-x^2y^2\)
=\(\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)
a)
\(=3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(x-3\right)\left(3x-2\right)\)
Bài 1:
a) \(\left(x+3\right)^2+x\left(x-2\right)=2x^2\)
\(x^2+6x+9+x^2-2x-2x^2=0\)
\(4x+9=0\)
\(x=\frac{-9}{4}\)
b) \(5x\left(x-4\right)-x+4=0\)
\(5x\left(x-4\right)-\left(x-4\right)=0\)
\(\left(x-4\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{1}{5}\end{cases}}}\)
Bài 2:
a) \(x^2-4x=x\left(x-4\right)\)
b) \(x^2+10x+25=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)
c) \(x^2-y^2+2y-1\)
\(=x^2-\left(y^2-2y+1\right)\)
\(=x^2-\left(y-1\right)^2\)
\(=\left(x-y+1\right)\left(x+y-1\right)\)
d) \(x^2-11x+18\)
\(=x^2-2x-9x+18\)
\(=x\left(x-2\right)-9\left(x-2\right)\)
\(=\left(x-2\right)\left(x-9\right)\)
(x + 3)2 + x(x - 2) = 2x2
x2 + 6x + 9 + x2 - 2x = 2x2
<=> 2x2 + 4x + 9 = 2x2
<=> 4x = -9
<=> x = -9/4
1) Ta có: 2xy - x2 - y2 + 16
= -(x2 - 2xy + y2 - 16)
= -[(x - y)2 - 16]
= -(x - y - 4)(x - y + 4)
2) x3 + 2x2y + xy2 - 9x
= x(x2 + 2xy + y2 - 9)
= x[(x + y)2 - 9]
= x(x + y - 3)(x + y + 3)
3) x4 - 2x2 = x2(x2 - 2)
1. 2xy-x2-y2+16= -(x2-2xy+y2-16) = -(x2-2xy+y2)-16 = -(x-y)2-16= (x+y)2-42= (x+y-4).(x+y+4)
2. x3+2x2y+xy2-9x= (có sai đề không vậy?)
a) \(\left(x-9\right)\left(x-7\right)+1\)
\(=x^2-16x+63+1\)
\(=x^2-16x+64\)
\(=\left(x-8\right)^2\)
b) \(x^3+2x^2-3x-6\)
\(=x^2\left(x+2\right)-3x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-3x\right)\)
\(=x\left(x+2\right)\left(x-3\right)\)
c) \(x^2-y^2+xz-yz\)
\(=x\left(x+z\right)-y\left(y+z\right)\)
\(=\left(x-y\right)\left(y+z\right)\)
d) \(x^3-x+3x^2y+y^3-y\)
botay:(
\(2.\)
\(a.\)
\(x^2-25=0\)
\(\Rightarrow x^2-5^2=0\)
\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
\(b.\)
\(5x^2-10x=0\)
\(\Rightarrow5x\left(x-10\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x=0\\x-10=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)