Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phương trình: X2 - (2m4+1)x + m2 + m - 1 = 0
a. Giải phương trình khi m=1 khi đó lập một phương trình nhận t1 = x1 + x2 và t2 = x1 x2 làm nghiệm.
b. Chứng minh phương trình có nghiệm với mọi m.
c. Tìm m sao cho:
A=(2x1 - x2)(2x2 - x1) đạt GTNN, thín GTNN đó (giá trị nhỏ nhất).
chịu @_@
a) thay m=1 vào lập denta giải pt ra đc x1=(3+căn5)/2;x2=(3-căn5)/2
t1=x1+x2=(3+căn5)/2+(3-căn5)/2=3
t2=x1*x2=(3+căn5)/2*(3-căn5)/2=1
=>t1+t2=4;t1*t2=3
=>t1;t2 là nghiệm của pt
T^2-4T+3=0
b) đenta=(2m+1)^2-4(m^2+m-1)=5>0
=>pt luôn luôn có nghiệm với mọi m
c) A=(2x1-x2)(2x2-x1)=5x1x2-2x1^2-2x2^2=5x1x2-2(x1^2+x2^2)=5x1x2-2(x1+x2)^2+4x1x2=9x1x2-2(x1+x2)^2
=9(m^2+m-1)-2(2m+1)^2=9m^2+9m-9-4m-2=9m^2+5m-11>=-421/36 khi x=-5/18
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2
bạn tính x1,x2 theo \(\Delta\)đi :P
Bài này k tính theo Viet đc
Xét \(\Delta=\left(m^2+m+1\right)^2+4\left(m^2-m+1\right)>0\)
=> PT luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{m^2+m+1}{m^2-m+1}\\x_1x_2=\frac{-1}{m^2-m+1}\end{cases}}\)
a, \(P=\frac{-1}{m^2-m+1}=\frac{-1}{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{-1}{\frac{3}{4}}=\frac{-4}{3}\)
Dấu "=" xảy ra khi \(m=\frac{1}{2}\)
b,Tìm GTNN : lấy S trừ 2
Câu 1 : nhân 2 vào pt(2) trừ vế cho vế , câu 2 tính viet sau đó lập bảng biến thiên