Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a \(2x+2>4\\ \Leftrightarrow2\left(x+1\right)>4\\ \Leftrightarrow x+1>2\\ \Leftrightarrow x>1\)
b \(3x+2>-5\\ \Leftrightarrow3x>-7\\ \Leftrightarrow x>\dfrac{-7}{3}\)
c \(10-2x>2\\ \Leftrightarrow2\left(5-x\right)>2\\ \Leftrightarrow5-x>1\\ \Leftrightarrow-x>-4\\ \Leftrightarrow x< 4\)
d \(1-2x< 3\\ \Leftrightarrow-2x< 2\\ \Leftrightarrow2x>2\\ \Leftrightarrow x>1\)
a)2x+2>4
<=> 2x>4-2
<=>2x>2
<=>x>1
Vậy...
b)3x+2>-5
<=>3x>-5-2
<=>3x>-7
<=>x>\(\dfrac{-7}{3}\)
Vậy...
c)10-2x>2
<=>-2x>-10+2
<=>-2x>-8
<=>x<4
Vậy...
d)1-2x<3
<=>-2x<3-1
<=>-2x<2
<=>x>-1
Vậy...
e)10x+3-5\(\le\)14x+12
<=>10x-2\(\le\)14x+12
<=>10x-14x\(\le\)2+12
<=>-4x\(\le\)14
<=>x\(\ge\)\(\dfrac{-7}{2}\)
Vậy...
f)(3x-1)<2x+4
<=> 3x-2x<1+4
<=>x<5
Vậy...
\(a,\frac{x+5}{x^2-2x+1}>0\)
\(\Leftrightarrow\frac{x+5}{\left(x-1\right)^2}>0\)
\(\Leftrightarrow x>-5\)
\(b,x^2+x+1>0\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) ( luôn đúng)
c: (3x-2)(x+3)<0
=>x+3>0 và 3x-2<0
=>-3<x<2/3
d: \(\dfrac{x-2}{x-10}>=0\)
=>x-10>0 hoặc x-2<=0
=>x>10 hoặc x<=2
e: \(3x^2+7x+4< 0\)
\(\Leftrightarrow3x^2+3x+4x+4< 0\)
=>(x+1)(3x+4)<0
=>-4/3<x<-1
1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)