Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(n^3+11n=n^3-n+12n=n\left(n^2-1\right)+12n=\left(n-1\right)n\left(n+1\right)+12n\)
Có \(\left(n-1\right)n\left(n+1\right)⋮6;12n⋮6\)
\(\Rightarrow n^3+11n⋮6\)
2)\(n^3-19n=n^3-n-18n=\left(n-1\right)n\left(n+1\right)-18n\)
\(Có\left(n-1\right)n\left(n+1\right)⋮6;18n⋮6\)
\(\Rightarrow n^3-19n⋮6\)
\(A=n^3-n+6n^2-24-18n=n\left(n^2-1\right)+6\left(n^2-4\right)-18n=n\left(n-1\right)\left(n+1\right)+6\left(n^2-4\right)-18n\)
ta thấy n(n-1)(n+1) là tích của 3 số tự nhiên ltiếp => trong đó có một số chia hết cho 2, chia hết cho 3 => tích chia hết cho 2.3=6
6(n^2-4) hiển nhiên chia hết cho 6
18n=6n.3 hiển nhiên chia hết cho 6 => A chia hết cho 6
\(n^3+6n^2-19n-24=\left(n^3+n^2\right)+\left(5n^2+5n\right)-\left(24n+24\right)\)
\(=n^2\left(n+1\right)+5n\left(n+1\right)-24\left(n+1\right)=\left(n+1\right)\left(n^2+5n-24\right)\)
\(=\left(n+1\right)\left[\left(n^2+2n\right)+\left(3n+6\right)-30\right]=\left(n+1\right)\left[n\left(n+2\right)+3\left(n+2\right)-30\right]\)
\(=\left(n+1\right)\left[\left(n+2\right)\left(n+3\right)-30\right]=\left(n+1\right)\left(n+2\right)\left(n+3\right)-30\left(n+1\right)\)
thấy : \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là 3 số tự nhiên liên tiếp, trong đó có 1 số chia hết cho 3, có ít nhất 1 số chia hết cho 2
mà 2 và 3 nguyên tố cùng nhau (có ước chung là 1) => (n + 1) (n + 2) (n + 3) chia hết cho 2.3 = 6
và 30 (n + 1) cũng chia hết cho 6
=> đpcm
Bài 2:
a: =n^2+6n+9-n^2+2n-1
=8n+8
=8(n+1) chia hết cho 8
b: =n^3-n+12n
=n(n-1)(n+1)+12n
Vì n;n-1;n+1 là ba số liên tiếp
nên n(n-1)(n+1) chia hết cho 6
=>A chia hết cho 6
c: =n^2+12n+36-n^2+12n-36=24n chia hết cho 24
B1: Giải:
\(n^4+6n^3+11n^2+6n\)
= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)
= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)
= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)
= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)
= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)
= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)
= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)
Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.
Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)
n4+6n3+11n2+6n
=(n4+5n3+6n2)+(n3+5n2+6n)
=(n2+n)(n2+5n+6)
=n(n+1)(n2+3n+2n+6)
=n(n+1)(n+2)(n+3)
Do n ; n+1;n+2;n+3 là 4 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2 , 1 số chia hết cho 3,1 số chia hết cho 4
=>n(n+1)(n+2)(n+3) chia hết cho 2.3.4=24(đpcm)
ta có: A= \(n^3-6n^2+11n-6\)
<=>A=\(n^3-n^2-5n^2+5n+6n-6\)
<=>A=\(n^2\left(n-1\right)-5n\left(n-1\right)+6\left(n-1\right)\)
<=>A=\(\left(n^2-5n+6\right)\left(n-1\right)\)
<=>A=\(\left(n-1\right)\left(n-2\right)\left(n-3\right)\)
Mặt khác: (n-1) ; (n-2) ; (n-3) là 3 số liên tiếp nên \(\left(n-1\right)\left(n-2\right)\left(n-3\right)\) là tích của 3 số liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3. mà 2 và 3 nguyên tố cùng nhau nên A chia hét cho (2.3)=6