K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2015

bài 2

a2(b-c)+b2(c-a)+c2(a-b)=a2b-a2c+b2c-b2a+c2a-c2b=b(a2-c2)+ac(a-c)-b2(a-c)=(a-c)(ab-bc+ac-b2)=(a-c)(c-b)(a-b)=0

=>a-c=0 hoặc c-b=0 hoặc a-b=0

=>c=a hoặc c=b hoặc a=b

=>đpcm

nhớ tick vs nha

13 tháng 6 2019

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)

DD
22 tháng 1 2021

Áp dụng bất đẳng thức Cauchy - Schwarz với 2 bộ số \(\left(a,b,c\right)\)và \(\left(1,1,1\right)\)ta có: 

\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a.1+b.1+c.1\right)^2=1\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{1}{3}\).

Dấu \(=\)xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\).

22 tháng 1 2021

Còn cách khác :3 

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :

\(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1^2}{3}=\frac{1}{3}\)

Đẳng thức xảy ra <=> a = b = c = 1/3

Vậy ta có điều phải chứng minh 

17 tháng 9 2018

Ko mat tinh tong quat: \(a\ge b\ge c\)

\(a^2\left(a-b\right)+b^2\left(a-c\right)+c^2\left(a-b\right)=0\)

\(VT\ge a^2\left(b-b\right)+b^2\left(c-c\right)+c^2\left(a-b\right)\)

\(VT\ge0+0+c^2\left(a-b\right)\)

\(c^2\left(a-b\right)\ge0\) (a>=b)

\(VT\ge0\).Dấu bằng khi ít nhất 2 số bằng nhau (a=b hoặc a=c)

TUong tu voi cac cach gs khac

1 tháng 4 2018

1. áp dụng BĐT cô-si:

\(\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}\ge2\sqrt{\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}}=2\sqrt{\frac{c+ab}{\frac{8}{9}}}\)

Tương tự: \(\frac{a+bc}{b+c}+\frac{b+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+bc}{\frac{8}{9}}}\) và \(\frac{a+ac}{a+c}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt[]{\frac{b+ac}{\frac{8}{9}}}\)

cộng vế theo vế :M= \(\frac{c+ab}{a+b}+\frac{a+bc}{b+c}+\frac{b+ac}{a+c}+\frac{a+b}{\frac{8}{9}}+\frac{b+c}{\frac{8}{9}}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+b+c+ab+bc+ac}{\frac{8}{9}}}\)(1)

mà a+b+c=1 và \(ab+bc+ac\le\frac{1}{3}\) ( tự chứng minh từ \(a^2+b^2+c^2\ge ab+bc+ac\) =>.....)

thay vào(1) => đpcm

1 tháng 4 2018

cái chỗ \(2\sqrt{\frac{c+ab}{a+b}.\frac{a+b}{\frac{8}{9}}}\) là nhân chứ không phải cộng nha

2 tháng 12 2017

(a+b+c)2=a2+b2+c2

=>2(ab+bc+ac)=0

=>ab+bc+ac=0

=> bc=-ab-ac

=>\(\frac{a^2}{a^2+2bc}=\frac{a^2}{a^2-ac-ab+bc}\)=\(\frac{a^2}{\left(a-c\right)\left(a-b\right)}\)

Tuong tu => \(\frac{b^2}{b^2+2ac}=....\)

                     \(\frac{c^2}{c^2+2ab}=...\)

=> \(\frac{a^2}{a^2+2bc}+....\)=\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)+...

                                         =\(\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

                                        =1

3 tháng 8 2017

Sửa lại đề : CM : \(\frac{1}{b^2+c^2}+\frac{1}{a^2+b^2}+\frac{1}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}+3\)

Ta có :

\(\frac{1}{b^2+c^2}=\frac{a^2+b^2+c^2}{b^2+c^2}=\frac{b^2+c^2}{b^2+c^2}+\frac{a^2}{b^2+c^2}=1+\frac{a^2}{b^2+c^2}\) 

Mà \(b^2+c^2\ge2bc\) nên \(\frac{1}{b^2+c^2}\le1+\frac{a^2}{2bc}\)(1)

CM tương tự ta cũng có : \(\hept{\begin{cases}\frac{1}{a^2+b^2}\le1+\frac{c^2}{2ab}\left(2\right)\\\frac{1}{c^2+a^2}\le1+\frac{b^2}{c^2+a^2}\left(3\right)\end{cases}}\)

Cộng vế với vế của (1);(2);(3) tại ta được :

\(\frac{1}{b^2+c^2}+\frac{1}{a^2+b^2}+\frac{1}{c^2+a^2}\le\frac{a^2}{2bc}+\frac{c^2}{2ab}+\frac{b^2}{2ac}+3=\frac{a^3+b^3+c^3}{2abc}+3\)

=> đpcm